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Abstract

In this note we look at the freeness for complex affine hypersurfaces. If X ⊂ Cn is
such a hypersurface, and D denotes the associated projective hypersurface, obtained
by taking the closure of X in Pn, then we relate first the Jacobian syzygies of D and
those of X. Then we introduce two types of freeness for an affine hypersurface X, and
prove various relations between them and the freeness of the projective hypersurface
D. We write down a proof of the folklore result saying that an affine hypersurface is
free if and only if all of its singularities are free, in the sense of K. Saito’s definition
in the local setting. In particular, smooth affine hypersurfaces and affine plane curves
are always free. Some other results, involving global Tjurina numbers and minimal
degrees of non trivial syzygies are also explored.
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1 Introduction

The notion of free hypersurface, or free divisor, has a long and fascinating history. This
concept was considered until now mostly in two settings, namely

(L) The local setting, where one looks at germs of hypersurfaces, as in the seminal paper
by K. Saito [21], see Definition 3.1 below. In particular, any plane curve singularity
is free.

(P) The projective setting, where one considers hypersurfaces in a complex projective
space Pn, as for instance in [2, 4, 9, 10, 23, 24, 26]. In particular, the free projective
hypersurfaces satisfy a lot of restrictions, for instance they must be rather singular,
namely the singular locus must have codimension one, see [9, Theorem 2.8] for curves
and [10, Corollary 4.4] for surfaces.

Note that the central hyperplane arrangements in some affine space Cm can be consid-
ered from both view-points, and Terao’s Conjecture, see for instance [3], is a beautiful open
problem in this area. More generally, any hypersurface in Cn defined by a homogeneous
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polynomial can be considered from both view-points, and freeness in one setting is the same
as freeness in the other.

In this paper we discuss the freeness for a reduced hypersurface X : g = 0 in Cn, where
g ∈ R = C[x1, . . . , xn], as well as a number of related results. The main object of study is
the R-module AR(g) of syzygies among the partial derivatives g1, . . . , gn of g with respect
to x1, . . . , xn and g itself. This R-module AR(g) is isomorphic to the R-module of Der(g)
of derivations of R preserving the principal ideal (g) ⊂ R, see Definition 2.3 and Lemma
2.5. However, AR(g) seems to contained more information than Der(g), for instance it
allows us to define a syzygy-degree function sdeg : AR(g) → ZZ, see Definition 2.8, and
the numerical invariant mdr(g), the minimal degree of a non-trivial syzygy in AR(g). We
denote by Der0(g) the R-submodule in Der(g) consisting of those derivations killing the
equation g.

If D : f = 0 is the usual projectivization of the hypersurface X, obtained by taking the
closure of X in the complex projective space Pn, then in Theorem 2.7 we show that there is
a natural epimorphism ϕ : AR(f) → AR(g), where AR(f) is the module of syzygies among
the partial derivatives f0, . . . , fn of f . This result is refined in Corollary 2.9, where we show
that there are isomorphisms ϕs : AR(f)s → AR(g)≤s for all integers s.

For affine hypersurfaces, we introduce two notions of freenees, the A-freeness and the
A0-freeness, related to the freeness of the R-module Der(g), and respectively Der0(g), see
Definition 3.2. The A-freeness is close to the usual freeness in the setting (L) and the A0-
freeness is close to the usual freeness in the setting (P). In Proposition 3.3 and Corollary
3.4 we describe some situations when the affine hypersurface X is A-free if and only if X is
A0-free. The following question is open, though we believe the answer should be affirmative.

Question 1.1. Does there exist an affine hypersurface X ⊂ Cn, with n ≥ 3, such that X
is A0-free, but not A-free ?

There is a characterization of bases of the free R-module Der(g), the so called Saito’s
Criterion, similar to the known results in the the settings (L) and (P), see Proposition 3.5.
Using this result, we show that the Milnor fibers of weighted homogeneous polynomials are
always A-free, and sometimes also A0-free, see Proposition 3.6, and construct explicit bases
for the free R-module Der(g) in these cases.

Another class of free affine hypersurfaces comes from the following fact: if the projective
hypersurface D is free, then the affine part X is A-free, see Corollary 3.7.

We write down a proof of the folklore result saying that an affine hypersurface is free if
and only if all of its singularities are free, in the sense of K. Saito’s definition in the local
setting, see Theorem 3.10. A rather a surprizing consequence of this result is that any
smooth affine hypersurface is A-free, while it was known that a free projective hypersurface
must have a codimension one singular locus.

In particular, any affine plane curve X : g = 0 is both A-free and A0-free, see Corollary
3.11. Moreover, in this case the ideal A(g) = Jg : (g), where Jg denotes the Jacobian ideal
of g, is either the whole ring R, or it is minimally generated by exactly two elements.

In Corollary 4.2 we give an upper bound for the total Tjurina number of an affine plane
curve X in terms of the minimal syzygy-degree mdr(g) of a syzygy in AR(g), a result
obtained in the projective setting (P) by A. du Plessis and C. T. C. Wall, see [12] and
then reproved by several authors, see for instance [4, 15]. A similar, but somewhat weaker
result holds for any hypersurface X such that its closure D has only isolated singularities,
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see Corollary 4.4. Another relation between the total Tjurina number of the projective
hypersurface D with only isolated singularities and mdr(g) is given in Proposition 4.5.

We would like to thank Laurent Busé and Masahiko Yoshinaga for useful discussions
concerning this project.

2 Affine vs. projective syzygies and their degrees

Let R = C[x1, . . . , xn] be the polynomial ring in n variables with complex coefficients, and
let X : g = 0 be a reduced hypersurface of degree d in the complex affine space Cn.

Let Jg = (g1, . . . , gn) ⊂ R denote the corresponding Jacobian ideal where gj = ∂jg.
Here and in the sequel

∂j =
∂

∂xj
for all j = 1, . . . , n.

One can introduce the Tjurina ideal of g by setting

Tg = Jg + (g)

where (g) denotes the principal ideal generated by g in R, and then the singular set Xsing

of X is precisely the zero set of this ideal Tg.

Remark 2.1. When n = 2, X being reduced is equivalent to X having only isolated
singularities, and this is in turn equivalent to the fact that the partial derivatives g1 and
g2 form a regular sequence in R. Let τ(X) denote the total Tjurina number of the affine
curve X, which is by definition the sum of all local Tjurina numbers τ(X, p) for p ∈ Xsing.
Then one clearly has

τ(X) = dim
R

Tg
. (2.1)

Note that in the general case there is an exact sequence

0 → AR(g) → Rn+1 → Tg → 0, (2.2)

where the morphism ψ : Rn+1 → Tg is given by

ψ(α0, α1, . . . , αn) = α0g + α1g1 + . . .+ αngn, (2.3)

AR(g) = kerψ and the morphism AR(g) → Rn+1 is the inclusion. In addition, to the
hypersurface X : g = 0 we can associated the ideal

A(g) = Jg : (g) = {β ∈ R : βg ∈ Jg} ⊂ R. (2.4)

There is an exact sequence of R-modules

0 → AR0(g) → AR(g) → A(g) → 0, (2.5)

where the second morphism π : AR(g) → A(g) is the projection

(α0, α1, . . . , αn) 7→ α0,

AR0(g) = kerπ, and AR0(g) → AR(g) is the inclusion.
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Example 2.2. When n = 2, theR-moduleAR0(g) is free of rank 1, generated by (0, g2,−g1).
This follows from the fact that in this case g1 and g2 have no common factors, see Remark
2.1.

Let Der(R) = {∂ = α1∂1+ . . .+αn∂n : αj ∈ R} be the free R-module of C-derivations
of the polynomial ring R.

Definition 2.3. The R-module Der(g) of derivations of R preserving the principal ideal
(g) ⊂ R is by definition

Der(g) = {∂ ∈ Der(R) : ∂g ∈ (g)}.

Moreover, the R-module Der0(g) of derivations of R killing the equation g is by definition

Der0(g) = {∂ ∈ Der(R) : ∂g = 0}.

There are similar definitions in the local case, where the polynomial ring R is replaced
by the local ring On of germs of analytic functions at the origin of Cn. Let Der(On) =
{∂ = α1∂1+ . . .+αn∂n : αj ∈ On} be the free On-module of C-derivations of the ring On.

Definition 2.4. Consider a hypersurface singularity (X, 0) at the origin of Cn, given by
an equation h = 0, with h ∈ On. The On-module Der(h) of derivations of On preserving
the principal ideal (h) ⊂ On is by definition

Der(h) = {∂ ∈ Der(On) : ∂h ∈ (h)}.

Moreover, the On-moduleDer0(h) of derivations of On killing the equation h is by definition

Der0(h) = {∂ ∈ Der(On) : ∂h = 0}.

However, note that the module Der(h) does not depend on the chosen equation for the
singularity (X, 0), but the module Der0(h) does depend, so the interest of the latter is
rather limited in the local setting.

Coming back to the global, polynomial case, one has the following.

Lemma 2.5. The R-modules Der(g) and AR(g) are isomorphic. Similarly, the R-modules
Der0(g) and AR0(g) are isomorphic.

Proof. It is clear that the obvious projection, namely

AR(g) → Der(g), (α0, α1, . . . , αn) 7→ ∂ = α1∂1 + . . .+ αn∂n,

is an isomorphism. The claim for the R-modules Der0(g) and AR0(g) is even more obvious.

Let S = C[x0, x1, . . . , xn] be the graded polynomial ring in n+1 variables with complex
coefficients, and let D : f = 0 be a reduced hypersurface of degree d in the complex
projective plane P2. We denote by Jf the Jacobian ideal of f , i.e. the homogeneous ideal in
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S spanned by the partial derivatives f0, f1, . . . , fn of f , where f0 = ∂0f and ∂0 are defined
in the obvious way. Consider the graded S-module of Jacobian syzygies of f , namely

AR(f) = {(a0, a1, . . . , an) ∈ Sn+1 : a0f0 + a1f1 + . . .+ anfn = 0}.

If one starts with an affine hypersurface X : g = 0 as above, one can consider its closure
D : f = 0 in Pn under the inclusion Cn → Pn given by

(x1, . . . , xn) 7→ (1 : x1 : . . . : xn).

Algebraically, this means that

f(x0, x1, . . . , xn) = xd0g

(
x1
x0
, . . . ,

xn
x0

)
and g(x1, . . . , xn) = f(1, x1, . . . , xn).

Note that the homogeneous polynomial f obtained in this way is not divisible by x0 or,
in other words, the hyperplane at infinity H0 : x0 = 0 is not an irreducible component for
D. In the sequel we consider only pair of hypersurfaces (X,D) obtained by this natural
construction.

Now we relate the S-module AR(f) to the R-module AR(g). Note that any R-module
can be regarded as an S-module using the ring morphism

θ : S → R, θ(u) = u(1, x1, . . . , xn),

for any u ∈ S. Note that the S-modules obtained using θ are not graded S-modules in
general. There is an obvious C-linear isomorphism

ηe : R≤e → Se

for any integer e ≥ 0, given by

ηe(v) = xe0v

(
x1
x0
, . . . ,

xn
x0

)
.

Here R≤e = {v ∈ R : deg v ≤ e} and Se is the homogeneous component of degree e of the
polynomial ring S. The following result is obvious.

Lemma 2.6. If v ∈ R≤e and v′ ∈ R≤e′ , then

ηe+e′(vv
′) = ηe(v)ηe′(v

′).

Theorem 2.7. For any pair of hypersurfaces X : g = 0, D : f = 0 as above, one has a
surjective morphism of S-modules ϕ : AR(f) → AR(g), given by

ϕ(a0, a1, . . . , an) = (d · θ(a0), θ(a1)− x1θ(a0), . . . , θ(an)− xnθ(a0)),

for any (a0, a1, . . . , an) ∈ AR(f).

Proof. First we show that the morphism ϕ is well-defined, that is that one has ϕ(a0, a1, . . . , an) ∈
AR(g). The equality g(x1, . . . , xn) = f(1, x1, . . . , xn) implies the following

gj = θ(fj) for any j = 1, . . . , n. (2.6)
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The Euler formula for the homogeneous polynomial f , namely

x0f0 + x1f1 + . . .+ xnfn = d · f,

implies the equality
θ(f0) = d · g − x1g1 − . . .− xngn. (2.7)

Using these formulas, we see that applying θ to the equality

a0f0 + a1f1 + . . .+ anfn = 0

we get
d · θ(a0)g + (θ(a1)− x1θ(a0))g1 + . . .+ (θ(an)− xnθ(a0))gn = 0. (2.8)

Therefore the morphism ϕ is well-defined. Now we show that the morphism ϕ is surjective.
Let ρ′ = (α0, α1, . . . , αn) ∈ Rn+1 be a vector such that

α0g + α1g1 + . . .+ αngn = 0 (2.9)

Comparing the equations (2.8) and (2.9), we see that it is enough to find a vector ρ =
(a0, a1, . . . , an) ∈ AR(f) such that

α0 = d · θ(a0) and αj = θ(aj)− xjθ(a0), for all 1 ≤ j ≤ n. (2.10)

This system of equations has a unique solution

θ(a0) =
α0

d
and θ(aj) = αj +

xjα0

d
, for all 1 ≤ j ≤ n. (2.11)

In other words, the vector (θ(a0), · · · , θ(an)), if it exists, is uniquely determined by the
vector ρ′. This solution satisfies the equation

θ(a0)(d · g − x1g1 − . . .− xngn) + θ(a1)g1 + . . .+ θ(an)gn = 0. (2.12)

We set
s = max{degαj : 1 ≤ j ≤ n}. (2.13)

Note that equation (2.9) implies that

deg(α0g) ≤ max{deg(αjgj)} ≤ s+ d− 1,

and hence degα0 ≤ s− 1. It follows that

max{degα0,deg(d · αj + xjα0) for 1 ≤ j ≤ n} ≤ s. (2.14)

Using (2.6) and (2.7), we see that

fj = ηd−1(gj) for 1 ≤ j ≤ n, and f0 = ηd−1(d · g − x1g1 − . . .− xngn). (2.15)

To end the proof we apply Lemma 2.6 with e = s and e′ = d− 1 to the equality (2.12). In
this way we get a vector

ρ = (a0, a1, . . . , an) ∈ AR(f)s such that ϕ(ρ) = ρ′,

where aj = ηs(αj +
xjα0

d ) for 1 ≤ j ≤ n and a0 = ηs(
α0

d ). If the inequality in (2.14) is strict,
then the syzygy ρ can be simplified by a power of x0, yielding a new syzygy ρ1 of degree
< s such that ϕ(ρ1) = ρ′.



A. Dimca, G. Sticlaru 239

Motivated by the above proof we introduce the following.

Definition 2.8. We define the syzygy-degree sdeg(ρ′) for any non-zero element

ρ′ = (α0, α1, . . . , αn) ∈ AR(g)

by the formula

sdeg(ρ′) = max{degα0,deg(d · αj + xjα0) for 1 ≤ j ≤ n}.

Note that one has

degα0 ≤ sdeg(ρ′) ≤ max{degα0 + 1,degαj for 1 ≤ j ≤ n}, (2.16)

and both these inequalities can be strict, see Remark 2.11. Note also the following obvious
but useful property: for any non-zero polynomial u ∈ R and any non-zero element ρ′ ∈
AR(g), one has

sdeg(uρ′) = deg u+ sdeg(ρ′). (2.17)

With this notation, we have the following result.

Corollary 2.9. With the above notation, for any pair of hypersurfaces X : g = 0, D : f = 0
as above and for any integer s, there is an isomorphism of C-vector spaces

ϕs : AR(f)s → AR(g)≤s,

where AR(g)≤s = {(ρ′ ∈ AR(g) : sdeg(ρ′) ≤ s}. In particular, if we define

mdr(f) = min{r : AR(f)r ̸= 0} and mdr(g) = min{r : AR(g)≤r ̸= 0}, (2.18)

then

mdr(g) = mdr(f) ≤ d− 1.

Proof. The proof of Theorem 2.7 yields the surjectivity of ϕs. To prove the injectivity of
ϕs, let ρ ∈ AR(f)s be a syzygy such that ϕ(ρ) = 0. This yields θ(aj) = 0 for all 0 ≤ j ≤ n,
where ρ = (a0, a1, . . . , an). This implies ρ, since the restriction of θ to each homogeneous
component Sk is clearly injective. The inequality mdr(f) ≤ d− 1 comes from the existence
of the Koszul syzygies κij , see below.

The following result is a direct consequence of the last claim in Corollary 2.9.

Corollary 2.10. Let D : f = 0 be a hypersurface of degree d > 1 in Pn. Consider all the
affine parts of it, namely the affine hypersurfaces

XH = D \H ⊂ Pn \H ≃ Cn,

for all hyperplanes H ⊂ Pn, H not an irreducible component of D. If gH = 0 is an equation
for the hypersurface XH , then one has mdr(gH) = mdr(f) for all these hyperplanes H.



240 Ramblings on the freeness of affine hypersurfaces

Note that among the Jacobian syzygies in AR(f) there are the following Koszul syzygies
κij , for all 0 ≤ i < j ≤ n, where

κij = fiej − fjei, (2.19)

where the vector ek ∈ Cn+1 has 1 on the k-th coordinate and zero everywhere else, for
k = 0, . . . , n.

Define new syzygies in AR(g) by κ′ij = ϕ(κij), using the morphism ϕ from Theorem 2.7.
Note that for 0 < i < j ≤ n, one has κ′ij = giej − gjei, while for i = 0 and 1 ≤ j ≤ n one
has

κ′0j = −dgje0 + gj
∑

k=1,n;k ̸=j

xkek + (d · g −
∑

k=1,n;k ̸=j

xkgk)ej .

Remark 2.11. Note that the syzygies κ′ij give examples where the inequalities in (2.16)
are strict.

Let KR(f) be the S-submodule in AR(f) generated by the Koszul syzygies κij , and
KR(g) be the R-submodule in AR(g) generated by the syzygies κ′ij . Consider the quotient
modules

ER(f) = AR(f)/KR(f), ER(g) = AR(g)/KR(g) and E(g) = A(g)/Jg. (2.20)

Note that the polynomial ring R has a natural increasing filtration

R≤s = {h ∈ R : deg h ≤ s}

and this filtration gives rise to an increasing filtration on the ideal A(g) ⊂ R, namely
A(g)≤s = A(g) ∩R≤s, and also on the quotient ideal E(g), namely

E(g)≤s = {[h] ∈ E(g) : h ∈ A(g)≤s}.

Similarly, the sdeg-filtration AR(g)≤s on the module AR(g) induces an increasing filtration
on the quotient ER(g), namely

ER(g)≤s = {[ρ′] ∈ ER(g) : ρ′ ∈ AR(g)≤s}.

Corollary 2.12. With the above notation, for any pair of curves X : g = 0, C : f = 0
as above, there are surjective morphisms ϕ : ER(f) → ER(g) and π : ER(g) → E(g). In
addition, one has a surjective morphism

ϕs : ER(f)s → ER(g)≤s,

for any integer s.

Proof. First we explain the notation. The morphism ϕ : ER(f) → ER(g) is induced by
the morphism ϕ : AR(f) → AR(g) and the surjectivity of ϕ : ER(f) → ER(g) and of
ϕs : ER(f)s → ER(g)≤s follows from Theorem 2.7 and Corollary 2.9 and the definition of
the quotient modules ER(f) and ER(g).

The morphism π : ER(g) → E(g) is induced by the projection on the third factor
π : AR(g) → A(g), and the surjectivity follows the definition of the quotient modules
ER(g) and E(g).
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Remark 2.13. Concerning the morphisms in Corollary 2.12 there are several useful points
to make.

1. For the case of curves, namely when n = 2, the morphism π : ER(g) → E(g) is an iso-
morphism. To show that π : ER(g) → E(g) is injective, assume that π([α0, α1, α2]) =
0 in E(g). This means that α0 ∈ Jg, hence one can write α0 = u1g1 + u2g2 for some
u1, u2 ∈ R. This implies that

(α0, α1, α2) +
u1
d
k′01 +

u2
d
k′02 ∈ ker{π : AR(g) → A(g)} = AR0(g),

and then use the description of AR0(g) given in Example 2.2. It follows that
[α0, α1, α2] = 0 in ER(g), which proves the claimed injectivity.

2. It is not true that the restrictions π : ER(g)≤s → E(g)≤s are surjective. Indeed, if
g = x21 + x32, then g ∈ Jg and hence A(g) = R and E(g)0 ̸= 0. On the other hand,
ER(g)≤0 ̸= 0 would imply by Corollary 2.12 that ER(f)0 ̸= 0. But a homogeneous
polynomial f satisfies AR(f)0 ̸= 0 if and only if after a coordinate change f does not
depend on one variable, and hence the zero set C : f = 0 is a union of lines passing
through one point. This shows that ER(g)≤0 = 0 when X : g = 0 is not a family of
lines.

3. It is not true that the restrictions ϕs : ER(f)s → ER(g)≤s are injective. If f =
x20x2+x

3
1 and hence g = x2+x

3
1, one has that the syzygy ρ = (x0, 0,−2x2) ∈ AR(f)1

is not in KR(f)1 = 0. However, ρ′ = ϕ1(ρ) = (3,−x1,−3x2) ∈ KR(g)1. More
precisely, one has

ϕ2(−κ02) = −κ′02 = (3,−x1,−3x2)

and sdeg(3,−x1,−3x2) = 1, which proves our claim.

Remark 2.14. The interest of the last claim in Corollary 2.12 comes from the fact that we
have some strong vanishing results for ER(f)s, which translate in having only high degree
representatives for the classes in ER(g) in many cases. For instance, if D has only simple
nodes A1 as singularities, then it is known that ER(f)s = 0 for s ≤ nd/2 − n − 1, see
[6, 7, 8]. When the hypersurface D has a single node, then it is known that ER(f)s = 0 for
s < n(d − 2), see [8, Definition 1.1, Equation 1.3 and Example 4.3], hence the generators
of ER(g) have sdeg at least n(d− 2).

Remark 2.15. Both for the affine hypersurface X : g = 0 and for the projective hypersur-
face D : f = 0, the defining equation is uniquely determined up to a non-zero constant fac-
tor. It follows that the objects defined above, namely Jg, Tg, AR(g), AR0(g),KR(g), ER(g),
A(g), Der(g), Der(g)0, mdr(g) can be denoted when convenient simply by JX , TX , AR(X),
AR0(X),KR(X), ER(X), A(X), Der(X), Der0(X),mdr(X), since they depend only on X
and not on the chosen equation g = 0 for X. Similarly, Jf , AR(f),KR(f), ER(f),mdr(f)
can be denoted simply by JD, AR(D),KR(D), ER(D),mdr(D).

3 On the freeness of affine hypersurfaces

First we recall the following definition, given by K. Saito in [21].
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Definition 3.1. A hypersurface singularity (X, 0) : h = 0 at the origin of Cn is said to be
free if the On-module of derivations Der(h) introduced in Definition 2.4 is free.

Motivated by this local notion, we introduce the following two global, algebraic notions.

Definition 3.2. The reduced affine hypersurface X ⊂ Cn is A-free (resp. A0-free) if the
R-module Der(X) of derivations preserving X (resp. the R-module Der0(X) of derivations
killing an equation of X) is free.

Using the exact sequences (2.2) and (2.5), and Lemma 2.5, one sees that the rank of
the R-module Der(X) is n, while the rank of the R-module Der0(X) is n − 1. Hence the
R-module Der(X) (resp. Der0(X)) is free if and only if it can be generated by n (resp.
n− 1) derivations.

The A-freeness defined above is similar to the usual definition in the local setting (L)
given by K. Saito in [21]. In the projective setting (P), that is when g is itself a homogeneous
polynomial, the A-freeness and the A0-freeness are equivalent, see for instance [3, Definition
8.1]. In fact, we have the following more general result.

Proposition 3.3. Let X : g = 0 be an affine hypersurface such that there is a derivation

ϵ = α1∂1 + . . .+ αn∂n ∈ Der(X)

such that ϵg = c · g, where c ∈ C∗. Then there is a direct sum decomposition

Der(X) = Der0(X)⊕R · ϵ,

and X is A-free if and only if X is A0-free.

Note that the hypothesis in Proposition 3.3 is equivalent to the equality A(X) = R.

Proof. It is clear that ϵ ∈ Der(g) = Der(X), and that for any δ ∈ Der(g), satisfying
δg = α · g for some α ∈ R, one has

δ − α · ϵ ∈ Der0(g) = Der0(X).

This yields the claimed direct sum decomposition. Then, if Der0(x) is a free R-module,
then this decomposition implies that Der(X) is also free. Conversely, if Der(X) is free,
then Der0(X) is a projective R-module, being a direct summand in a free module. We get
the result using Quillen-Suslin Theorem, saying that any finite type projective R-module is
free, see [20, 25].

Corollary 3.4. An affine hypersurface X : g = 0 is A-free if and only if it is A0-free, if
one of the following cases occurs.

1. The polynomial function g : Cn → C has no singularities, i.e. it is a submersion.
Equivalently, Jg = R.

2. The polynomial g is weighted homogeneous of type (w1, . . . , wn;N), where the weights
wj are positive or negative integers, and the weighted degree N is not zero.
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In the case (1) above, one has in fact Jg = Ag = A(X) = R, and such polynomials g
can be rather complicated, in particular far away from weighted homogeneous polynomials,
see [1]. Note that for the claim (2), the Euler derivation is

ϵ =
w1x1
N

∂1 + . . .+
wnxn
N

∂n. (3.1)

For general affine hypersurfaces, the relation between A-freeness and A0-freeness is not
clear, as we see in Proposition 3.6 and in Theorem 3.10 below.

In order to find a basis for the free R-module AR(g), the following result might be
useful. Note that its local analog is well known, see [21], as well as the projective analog,
see [3, Theorem 8.1].

Proposition 3.5. (Saito’s Criterion) Let δi = αi1∂1 + . . . + αin∂n, for i = 1, . . . , n, be n
derivations in Der(X), for the affine hypersurface X : g = 0. Then δ1, . . . , δn is a basis for
the free R-module Der(X) if and only if

detM(δ1, . . . , δn) = det(αij) = c · g,

where c ∈ C∗.

Proof. Start with any set of n derivations in Der(X), say δ1, . . . , δn. If p ∈ X is a smooth
point, then one has

n∑
j=1

αij(p)gj(p) = 0 for i = 1, . . . , n.

Since the hypersurface X is reduced, the smooth points are dense on X, and the above
equalities imply that detM(δ1, . . . , δn) vanishes on X. Therefore

detM(δ1, . . . , δn) = hg,

for some polynomial h ∈ R.
Assume now that δ1, . . . , δn is a basis for the free R-module Der(X). Then they are

R-linearly independent, and hence h is not the zero polynomial. Consider the following
derivations βj ∈ Der(g): β1 = g∂1 and then the Koszul derivations βj = κ1j = g1ej − gje1
for j = 2, . . . , n. We derive the existence of an n× n matrix N such that

M(β1, . . . , βn) = NM(δ1, . . . , δn).

By taking the determinants, we get

ggn−1
1 = (detN)hg.

This implies that h divides gn−1
1 . By using the Koszul relations obtained by fixing a

coordinate k ̸= 1, we get in a similar way that h divides gn−1
k for any k = 1, . . . , n. If we

consider now the derivations β′
j = g∂j , we get in a similar way that h divides gn−1. This

gives a contradiction, since X : g = 0 is a reduced hypersurface.
Conversely, assume h ∈ C∗ and let β be a derivation in Der(X). Then using Cramer’s

rule, we see that we can find polynomial ui ∈ R such that

gβ = u1δ1 + . . .+ unδn.
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Let Mi be the matrix obtained from M = M(δ1, . . . , δn) by replacing the i-th line by the
coordinates of β. Then one has as above detMi = vig, for some polynomials vi ∈ R. Now
g detMi = vig

2 can be regarded as the determinant of the matrix M ′
i obtained from M

by replacing the i-th line by the coordinates of gβ. Using the formula above, we see that
detM ′

i = ui detM = uihg. This implies that all the coefficients ui are divisible by g, and
hence the derivations δ1, . . . , δn generate the R-module Der(X).

Using Saito’s Criterion we can construct a lot of A-free hypersurfaces, which are some-
times also A0-free. Before doing this, we recall that the hypersurface D : f = 0 in Pn is free
if the graded S-module AR(f) is free, see for instance [10]. Since the rank of the S-module
AR(f) is always n, it follows that AR(f) is free exactly when AR(f) is generated by n
homogeneous syzygies, say ρ1, . . . , ρn. We set dj = deg ρj and assume that

d1 ≤ . . . ≤ dn.

Note that the case d1 = 0 occurs if and only if D is a cone over a hypersurface in Pn−1, a
situation which is not of interest in the sequel, hence we assume from now on d1 ≥ 1. We
call these degrees (d1, . . . , dn) the exponents of the free hypersurface D and assume that
d1 ≤ . . . ≤ dn. Moreover, we recall that

d1 + . . .+ dn = d− 1. (3.2)

In particular, for n = 2, one has

d1 ≤ d− 1

2
. (3.3)

In the following result, we construct explicit bases for the R-module Der(g) in many cases,
in particular for the Milnor fibers of weighted homogeneous polynomials.

Proposition 3.6. Assume that h ∈ R is a weighted homogeneous polynomial of type
(w1, . . . , wn;N), where the weights wj are positive or negative integers, and the weighted
degree N is not zero. Then the smooth affine hypersurface Xt : g = h + t = 0, for t ∈ C∗,
is A-free. Moreover, when w1 = . . . = wn = 1, the hypersurface V : h = 0 in Pn−1 is free if
and only if the affine hypersurface X is A0-free.

Note that the hypersurfaces Xt for t ∈ C∗ are isomorphic to each other, and in particular
X−1 is usually called the Milnor fiber of the weighted homogeneous polynomial h.

Proof. For any non-zero polynomial h ∈ R, the exact sequence (2.2) shows that the rank
of the R-module AR(h) is n. This implies that there are n derivations βj ∈ AR(h), for
j = 1, . . . , n such that the corresponding matrix M(β1, . . . , βn), constructed using their
coefficients as in Proposition 3.5 above, has a non-zero determinant. In fact, we can and do
choose β1 to be the Euler derivation ϵ as in the formula (3.1), and βj ∈ AR0(h) for j > 1.
Consider now the following n derivations δj ∈ AR(g), for j = 1, . . . , n, where

δj = gj
∑

1≤k≤n,k ̸=j

wkxk
N

∂k +
(
t+

wjxjgj
N

)
∂j .
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Note that one has gi = hi for all i = 1, . . . , n and

δjg = δjh = gj(h+ t) = gjg.

Therefore we have indeed δj ∈ AR(g), for j = 1, . . . , n. Consider now the matrixM(δ1, . . . , δn)
as in Proposition 3.5 and note that we have

M(β1, . . . , βn)M(δ1, . . . , δn) =M(gβ1, tβ2, . . . , tβn).

By taking determinants we get

detM(β1, . . . , βn) detM(δ1, . . . , δn) =

= detM(gβ1, tβ2, . . . , tβn) = tn−1g detM(β1, . . . , βn).

Since detM(β1, . . . , βn) ̸= 0, we conclude that

detM(δ1, . . . , δn) = tn−1g

and hence AR(g) is a free R-module and δ1, . . . , δn is a basis of it by Saito’s Criterion in
Proposition 3.5.

To prove the claim about the A0-freeness of Xt, note that AR0(g) = AR0(h). Hence Xt

is A0-free if and only if V : h = 0 is a free hypersurface in Pn−1.

The following result is an obvious consequence of Theorem 2.7.

Corollary 3.7. Let D : f = 0 be a free hypersurface of degree d > 1 in Pn. Consider an
affine part of it, namely the affine hypersurface

XH = D \H ⊂ Pn \H ≃ Cn,

for a hyperplane H ⊂ Pn, H not an irreducible component of D. Then the affine hypersur-
face XH is A-free.

Proof. Since D is free, the S-module AR(f) admits a set of n generators, and hence, by
Theorem 2.7, the R-module AR(g) also has a generating set of n elements.

The converse implication in Corollary 3.7 does not hold, as the following example shows.

Example 3.8. Consider the smooth projective surface D : f = x20 + x21 + x22 + x23 = 0,
and the associated affine part X : g = x21 + x22 + x23 + 1. Then D is not free, since a free
projective hypersurface has a codimension 1 singular locus, see [10]. However, the affine
surface X is A-free by Proposition 3.6. More precisely the R-module AR(g) is generated
by the vectors

ρ′1 = (−2x3, x1x3, x2x3, x
2
3 + 1), ρ′2 = (−2x2, x1x2, x

2
2 + 1, x2x3) and

ρ′3 = (−2x1, x
2
1 + 1, x1x2, x1x3).

On the other hand, the R-module AR0(g) is not free, since it is the first syzygy module
of the maximal ideal (x1, x2, x3) ⊂ R. This example also shows that one cannot expect a
formula similar to (3.2) in the affine case.
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Remark 3.9. To check whether a given affine hypersurface of degree d in Cn is A-free
or A0-free, at least for small values of d and n ≥ 3, one may use Macaulay2, the package
QuillenSuslin, see [16].

For any R-module of finite type M , let M̃ be the coherent sheaf on C2 associated to M .
It is usual to say that an R-module of finite type M has a property (P) if the associated

coherent sheaf M̃ has this property.
The following result is at least folklore. Since we are not aware of any reference for it,

we include a proof.

Theorem 3.10. A reduced affine hypersurface X is A-free if and only if all the hypersurface
singularities (X, p) for p ∈ Xsing are free. In particular, any smooth affine hypersurface X
is A-free.

Proof. First we use Quillen-Suslin Theorem, saying that an R-module of finite type P is free
if and only if it is projective, see [20, 25]. Then we use the general fact that an R-module of
finite type P is projective if and only if all of its localizations Pm at maximal ideals m ⊂ R
are free, see [14, Theorem A3.2].

We apply these results to the R-module Der(g). If the maximal ideal m corresponds to
a point pm ∈ Cn, then the germ (X, pm) of the hypersurface X at pm can be regarded as
a singularity at the origin of Cn, simply by using a translation, so it has a local equation
hpm = 0, with hpm ∈ On. When pm /∈ X, then one can take hpm = 1, and hence

Der(hpm) = Der(1) = Der(On)

is clearly a free On-module. Similarly, when pm is a smooth point on X, then one can choose
the local analytic coordinates such that hpm = x1, and in this case Der(hpm) = Der(x1) is
also a free On-module, with a basis given by

x1∂1, ∂2, . . . , ∂n.

For any maximal ideal m ⊂ R, we have a morphism of local rings

ιm : Rm → On,

obtained by regarding a rational fraction in the localization Rm as an analytic function
germ at pm ∈ Cn, and then using the obvious translation to get an analytic function at
the origin of Cn, hence an element of On. Using ιm, one can regard the ring On as an
Rm-module. Then one has

Der(g)m = Der(g)⊗R Rm and Der(hpm) = Der(g)m ⊗Rm
On.

Now we can use general GAGA type results, see [22], and see that the Rm-module Der(g)m
is free if and only if the On-module Der(hpm) is free. We have seen above that this latter
condition is automatically satisfied when pm /∈ Xsing. This completes the proof of our
claims.

Corollary 3.11. Any reduced affine plane curve X is both A-free and A0-free. Moreover,
one has either A(X) = R, or the proper ideal A(X) ⊂ R is minimally generated by exactly
two polynomials.
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Proof. The fact that Der0(X) is a free R-module of rank 1 follows from Example 2.2.
For Der(X) we use Theorem 3.10 and hence it is enough to show that any plane curve
singularity is free. To do this, one can use two approaches. Namely, one can use K. Saito
results, see in particular [21, Corollary 1.7]. Or, one can notice that the analytic sheaf
version of the exact sequence (2.2) implies that Der(h) is a stalk of a second syzygy sheaf
F , see for instance [19, Definition 1.1.5]. Hence the codimension of the singularity set S(F)
of F is > 2, see [19, Theorem 1.1.6]. Therefore in our case S(F) = ∅ and the coherent sheaf
F is locally free. Since Der(h) = F0, the stalk of F at the origin, then the first claim is
proved.

Alternatively, to show that any plane curve singularity is free, one can use the much
more general proof given in [17, Proposition 2.6].

Theorem 3.10 and the exact sequence (2.5) imply that the ideal A(X) can be generated
by 2 elements. Since A(X) has finite codimension in R, it follows that A(X) is generated
by a single element if and only if this element is a unit, i.e. exactly when A(X) = R.

Example 3.12. Let C : f = 0 be a smooth curve of degree d > 1 in P2. Then the projective
curve C is not free, see for instance [9, Theorem 2.8], but all the affine parts of it, namely
the curves

XL = C \ L ⊂ P2 \ L ≃ C2,

for all lines L ⊂ P2 are free in view of Theorem 3.10. For instance, if C : f = xd0+x
d
1+x

d
2 = 0

and X : g = xd1 + xd2 + 1 = 0, then AR(g) is generated by

ρ′1 = (−dxd−1
2 , x1x

d−1
2 , xd2 + 1) and ρ′2 = (−dxd−1

1 , xd1 + 1, xd−1
1 x2).

To check this claim, we recall that for a smooth curve C : f = 0, the S-module AR(f)
is generated by the Koszul syzygies κij defined in (2.19). It follows from Theorem 2.7
that the R-module AR(g) is generated by the images κ′ij of the Koszul syzygies under
the morphism ϕ. The reader can check easily that one has κ′02 = dρ′1, κ

′
01 = dρ′2 and

κ′12 = dxd−1
1 ρ′1 − dxd−1

2 ρ′2. Note that sdeg(ρ′1) = sdeg(ρ′2) = d − 1, and in particular the
minimal degree mdr(g) of a generator for AR(g) for a free affine curve does not satisfy
an inequality similar to (3.3). For a general smooth curve C and any line L, the equality
mdr(g) = mdr(f) = d− 1 follows from Corollary 2.9.

Remark 3.13. For any pair of curves X : g = 0, C : f = 0 as above, let r = mdr(f) =
mdr(g). By Corollary 2.9 we know that dimAR(f)r = dimAR(g)≤r. Note that the integer
dimAR(f)r is the number of generators of degree r in any minimal system of homogeneous
generators for the graded S-module AR(f). In particular, dimAR(f)r ≤ Nf , where Nf is
the minimal number of generators for the graded S-module AR(f). The equality can hold,
for instance when C : f = 0 is a maximal nodal curve as in [18], namely a rational curve of
degree d having exactly (d− 1)(d− 2)/2 nodes. In this case r = d− 1 and

dimAR(f)r = Nf = d+ 1,

see [11, Proposition 5.8]. In particular, the difference Nf −Ng = d−1 can be as large as we
wish. On the other hand, the inequality dimAR(g)≤r ≤ Ng, where Ng = 2 is the minimal
number of generators for the R-module AR(g) can fail. For instance, for a maximal nodal
curve as above, we have dimAR(g)≤r = d+ 1, but Ng = 2.
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4 Bounds on Tjurina numbers

In this section we consider affine hypersurfaces X having only isolated singularities. We
discuss first the case of plane curves, where the results are more complete. Let τ(C) denote
the total Tjurina number of a projective plane curve C : f = 0, which is by definition the
sum of all local Tjurina numbers τ(C, p) for p ∈ Csing. The two invariants τ(C) andmdr(f)
are related by the following inequalites, see [4, 12, 15].

Theorem 4.1. Let C : f = 0 be a reduced projective plane curve of degree d with r =
mdr(f). Then one has

τ(d, r)min = (d− 1)(d− r − 1) ≤ τ(C).

On the other hand, one has the following upper bounds for τ(C).

1. If r < d/2, then
τ(C) ≤ τ(d, r)max = (d− 1)(d− r − 1) + r2

and the equality holds if and only if the curve C is free.

2. If d/2 ≤ r ≤ d− 1, then
τ(C) ≤ τ(d, r)max,

where, in this case, we set

τ(d, r)max = (d− 1)(d− r − 1) + r2 −
(
2r − d+ 2

2

)
.

The equality holds in (2) if and only if the projective curve C is maximal Tjurina, see
[11] for the definition and the properties of these curves. In the affine case, we have the
following result, similar to Theorem 4.1.

Corollary 4.2. For any pair of curves X : g = 0, C : f = 0 of degree d as above, one has

τ(X) ≤ τ(C)

and the equality holds exactly when the curve C has no singularities on the line at infinity
L0 : x0 = 0. Moreover

τ(X) ≤ τ(d, r)max,

where r = mdr(g) = mdr(f) and τ(d, r)max is defined as in Theorem 4.1. In addition, this
last inequality is an equality if and only if the curve C has no singularities on the line at
infinity L0 and C is either free when r′ < d/2, or maximal Tjurina when r′ > d/2.

Proof. The first claim is obvious. To prove the remaining claims, we use Theorem (4.1) and
the equality mdr(f) = mdr(g) established in Corollary 2.9.

In higher dimensions, one has the following result, see [13, Theorem 5.3] for the proof
and [5] for a discussion of this result.
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Theorem 4.3. Assume that the hypersurface D : f = 0 in Pn has only isolated singularities
and set r = mdr(f). Then

(d− r − 1)(d− 1)n−1 ≤ τ(D) ≤ τ(d, r)max = (d− 1)n − r(d− r − 1)(d− 1)n−2.

Using this result, we have the following analog of Corollary 4.2.

Corollary 4.4. For any pair of hypersurfaces X : g = 0 in Cn and D : f = 0 in Pn of
degree d as above, where D has only isolated singularities, one has

τ(X) ≤ τ(D)

and the equality holds exactly when the hypersurface D has no singularities on the hyperplane
at infinity H0 : x0 = 0. Moreover

τ(X) ≤ τ(d, r)max,

where r = mdr(g) = mdr(f) and τ(d, r)max is defined as in Theorem 4.3.

One may ask if the degree mdr(g) (resp. mdr(f)) depends on the singularities of X
(resp. D). One has the following partial result, when D has only isolated singularities,
saying that the answer is negative when τ(X) (resp. τ(D)) is small compared to (d−1)n−1.

Proposition 4.5. For any pair of hypersurfaces X : g = 0 in Cn and D : f = 0 in Pn of
degree d as above, where D has only isolated singularities, one has

d− 1− τ(D)

(d− 1)n−1
≤ mdr(g) = mdr(f) ≤ d− 1.

In particular, if in addition τ(D) < (d− 1)n−1, then mdr(g) = mdr(f) = d− 1.

Proof. The first inequality follows from the lower bound for τ(D) in Theorem 4.3. The
relations mdr(g) = mdr(f) ≤ d− 1 come from Corollary 2.9.

Note that in Proposition 4.5 one can replace τ(D) by τ(X), when the affine hypersurface
X has no singularities at infinity, namely when the hypersurface D has no singularities on
the hyperplane at infinity H0 : x0 = 0.
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[26] S. O. Tohăneanu, On freeness of divisors on P2, Comm. Algebra, 41, 2916–2932
(2013).

Received: 04.02.2022
Accepted: 11.04.2022

(1) Université Côte d’Azur, CNRS, LJAD, France
and Simion Stoilow Institute of Mathematics,

P.O. Box 1-764, RO-014700 Bucharest, Romania

E-mail: dimca@unice.fr

(2) Faculty of Mathematics and Informatics, Ovidius University,
Bd. Mamaia 124, 900527 Constanta, Romania

E-mail: gabriel.sticlaru@gmail.com


