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Abstract

In this study, we introduce (pre)cat1-R-algebroids, as a generalisation of cat1-
algebras, and prove the equivalence between the categories of (pre)cat1-R-algebroids
and (pre)crossed modules of R-algebroids. Moreover, we look over some immediate
consequences of the equivalences and, as an application, for converting precat1-R-
algebroids into cat1-R-algebroids we develop an equivalent method to the one used for
converting precrossed modules into crossed modules of R-algebroids.
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1 Introduction

Crossed modules, algebraic models of homotopy 2-types, were first introduced byWhitehead
in his studies [20, 21] on homotopy groups, and then become a useful tool in both homo-
logical and homotopical algebra, with several equivalent descriptions. In this sense, as one
of the first published proofs of such equivalences, the equivalence between the categories
of crossed modules of groups and G-groupoids was proved by Brown and Spencer in [6],
where the equivalence is referred to Duskin’s, [9], and Verdier’s (1965) unpublished works.
Soon after, cat1-groups, originally named as 1-cat-groups, were introduced and shown to
be equivalent to crossed modules of groups, and also to group objects in the category of
categories and to simplicial groups whose Moore complex is of lenght 1, by Loday in [13].
An explicit proof of the equivalence between (pre)cat1-groups and (pre)crossed modules of
groups can be found in [5].

On the other hand, cat1-algebras and catn-algebras, in general, were introduced and
shown to be equivalent to crossed modules and crossed n-cubes of algebras, respectively, by
Ellis in his thesis [10] and in [11]. Shammu gave an explicit proof of the equivalence between
cat1-algebras and crossed modules of algebras in his thesis [19]. Recently, a computer
implementation of the equivalence between cat1-algebras and crossed modules of algebras
was made by Arvasi and Odabaş in [1].

As a more general notion, R-algebroids, where R is a commutative ring, were especially
studied by Mitchell in [15, 16, 17] and by Amgott in [4]. Mitchell gave a categorical defi-
nition of R-algebroids (cf. Definition 1). Later on, as a generalisation of crossed modules of
associative R-algebras, Mosa introduced crossed modules of R-algebroids and proved their
equivalence to special double R-algebroids with connections in his thesis [18].
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In a more recent and similar study [12], using the equivalence between the categories of
split epimorphisms and object actions in a semiabelian category C, Janalidze introduced
the notion of an internal precrossed module, by describing an internal reflexive graph as an
object action equipped with some additional structure, and thus obtained an equivalence
between the categories of internal reflexive graphs and internal precrossed modules in C.
Likewise, he introduced the notion of an internal crossed module, by describing an internal
category as an internal precrossed module satisfying an additional axiom, and thus obtained
an upgraded equivalence between the categories of internal categories and internal crossed
modules. Using a similar methodology, for a fixed class of spans in a monoidal category,
Böhm obtained an equivalent description of a split epimorphism of monoids in terms of
a distributive law, and used this equivalence to present equivalent descriptions of some
reflexive graphs of monoids in terms of relative precrossed modules of monoids and of
some relative categories in the category of monoids in terms of relative crossed modules of
monoids, in [7]. Subsequently, Böhm proved in [8] that the last two equivalent categories,
the category of relative categories in the category of monoids and the category of relative
crossed modules of monoids, are also equivalent to the category of simplicial monoids whose
Moore length is 1.

In our study, after giving some basic data on (pre)crossed modules of R-algebroids, in
Sect. 2, we introduce (pre)cat1-R-algebroids, as a generalisation of cat1-algebras, in Sect. 3.
Then, in Sect. 4, in order to conclude that the categories PCat1-Alg (R) of precat1-R-
algebroids and PXAlg (R) of precrossed modules of R-algebroids are equivalent, we show
that the functor F : PCat1-Alg (R)→PXAlg (R) defined for each precat1-R-algebroid A=
(A, u, v) by FA = NA = (ηA :Keru→ Imu), where ηAa = va on morphisms, and for each
morphism {f} :A→A′ of precat1-R-algebroids by F {f}= (fKeru, fImu), where fKeru and
fImu are the restrictions of f on Keru and Imu, respectively, is an equivalence of categories.

In Sect. 5, using the restrictions F̃ and G̃ of the functors F and G, we upgrade the
equivalence between the categories PCat1-Alg (R) and PXAlg (R) to an equivalence between
the categories Cat1-Alg (R) of cat1-R-algebroids and XAlg (R) of crossed modules of R-
algebroids.

Finally, in Sect. 6, we first briefly mention the consequences of the equivalences ob-
tained and simply exemplify some consequences. Then, as an application, for converting
a precat1-R-algebroid into a cat1-R-algebroid we develop an equivalent method to the one
used in [3] for converting a precrossed module into a crossed module of R-algebroids using
the Peiffer ideal and we show that the functors (−)

ct
and (−)

cr
associating with the two

methods, respectively, correspond to each other through the equivalences proved.

It is an undeniable fact that working with a many-object version of a categorical struc-
ture is more advantageous than working with its one-object version for several reasons. One
reason, for example, is that any results in the many-object case can generally be transferred
to the one-object case, while the converse is not always possible. Another reason is that
many-object versions generally have more categorically preferred properties. For instance,
the category of R-algebroids is monoidally closed, as proved in [18,Proposition 1.1.4], while
that of associative R-algebras is not. That is why many categorical structures on groups
have been generalised to their many-object versions, namely to groupoids. However, stud-
ies on generalisation of associative algebras to algebroids are still insufficient. In partic-
ular, many categorical aspects of (pre)crossed modules of R-algebroids have not yet been
examined thoroughly. In this respect, the generalisation of cat1-algebras to (pre)cat1-R-
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algebroids and the equivalences obtained here are of great importance. Because, after now,
thanks to these equivalences, we have the opportunity to prefer dealing with (pre)cat1-R-
algebroids, which structurally have just one R-algebroid and thus sometimes may more
easily be handled compared to (pre)crossed modules of R-algebroids.

Throughout this paper R will be a fixed commutative ring.

2 Basic data on (pre)crossed modules of R-algebroids

With small differences in essence and in naming, most of the following data come from
Mitchell’s studies [15, 16] and Mosa’s thesis [18] and, despite the differences, for each quoted
data below we specified the reference(s) from which the data originated.

Definition 1. [15, Sect. 11, p. 50][16, Sect. 7, p. 879] A category of which each homset has
an R-module structure and of which composition is R-bilinear is called an R-category. A
small R-category is called an R-algebroid. Moreover, if we omit the axiom of the existence
of identities from an R-algebroid structure then the remaining structure is called a pre-R-
algebroid.

Note from the definition that every R-algebroid is a pre-R-algebroid.

Remark 1. Throughout the paper for any pre-R-algebroid A we adopt the following nota-
tional conventions:
1. Ob (A) (= A0) and Mor (A) are the object and morphism sets of A, respectively.
2. s, t : Mor (A) → A0 are the source and target functions. Thus, sa and ta are respectively
the source and target of any a ∈ Mor (A), and a is said to be from sa to ta.
3. a ∈ A means that a ∈ Mor (A) and if a, a′ ∈ A with ta = sa′ then their composition is
denoted by aa′.
4. For each x, y ∈ A0, the homset consisting of all morphisms from x to y is denoted by
A(x, y).
5. The zero morphism of any homset A(x, y) is denoted by 0A(x,y), or only by 0 if there is
no ambiguity.
6. The identity morphism on any x ∈ A0, if exists, is denoted by 1x, or only by 1 if there
is no ambiguity.

Definition 2. [15, Sect. 11, p. 51][16, Sect. 7, p. 879] An R-linear functor between two R-
categories is called an R-functor and an R-functor between two R-algebroids is called an
R-algebroid morphism. Moreover, an assignment between two pre-R-algebroids satisfying
all axioms of an R-functor except for the identity preservation axiom is called a pre-R-
algebroid morphism.

Note from the definition that every R-algebroid morphism is a pre-R-algebroid morphism.

Definition 3. [18,Chapter I, Definition 1.3.4] Let A be a pre-R-algebroid. A pre-R-algebroid
S is called a pre-R-subalgebroid of A if S0 ⊆ A0, S (x, y) is an R-submodule of A(x, y) for
all x, y ∈ S0 and the composition of any two composible morphisms of S is the same as their
composition in A. Moreover, if A and S are both R-algebroids and if the identity morphism
on each object of S is the same as that of A then S is said to be an R-subalgebroid of A.



270 Equivalence between (pre)cat1-R-algebroids and (pre)crossed modules of R-algebroids

Note in the definition that the source and target functions of S are the restrictions of those
of A. Note also that the morphism set of S can be uniquely partitioned into the family
{S (x, y) ⊆ A(x, y) : x, y ∈ S0} of R-submodules. So, the union of a family of R-submodules
of a (pre-)R-algebroid A can be a morphism set of at most one (pre-)R-subalgebroid of A
and if it is the case then the object set and the source and target functions are uniquely
determined by the family. Therefore, if a family S = {S (x, y) ⊆ A(x, y) : x, y ∈ S0 ⊆ A0}
of R-submodules determines a (pre-)R-subalgebroid of A then, by abuse of language, we
shall say that S is a (pre-)R-subalgebroid of A.

Definition 4. [18, Chapter I, Definition 1.3.5] Let A be a pre-R-algebroid and I be a pre-
R-subalgebroid of A with I0 = A0. If ab, ba′ ∈ I for all b ∈ I and a, a′ ∈ A with ta = sb,
tb = sa′ then I is called a two-sided ideal of A.

Definition 5. Given a pre-R-algebroid A and two families S1 = {S1 (x, y) ⊆ A(x, y) :
x, y ∈ A0} and S2 = {S2 (x, y) ⊆ A(x, y) : x, y ∈ A0} of subsets, the product S1S2 of S1 and
S2 is defined as the family {(S1S2) (x, y) ⊆ A(x, y) : x, y ∈ A0} where (S1S2) (x, y) = {ab :
a ∈ S1 (x, z) , b ∈ S2 (z, y) , z ∈ A0}.

Definition 6. [18, Chapter I, p. 10-11] Let A and N be two pre-R-algebroids with the same
object set A0. A family of maps defined for all x, y, z ∈ A0 as

N(x, y)×A(y, z) −→ N(x, z)
(n, a) 7−→ na

is called a right action of A on N if the conditions

1. na1+a2 = na1 + na2 3. (na)
a′

= naa′
5. r · na = (r · n)a = nr·a

2. (n1 + n2)
a
= na

1 + na
2 4. (n′n)

a
= n′na

and the condition n1tn = n, whenever 1tn exists, are satisfied for all r ∈ R, a, a′, a1, a2 ∈ A,
n, n′, n1, n2 ∈ N with appropriate sources and targets.

A left action of A on N is defined similarly, only with a side difference. Moreover, if

A has a right and a left action on N and if (an)
a′

= a
(
na′

)
for all n ∈ N, a, a′ ∈ A

with ta = sn, tn = sa′ then A is said to have an associative action on N or to act on N
associatively.

Corollary 1. Given two pre-R-algebroids A and N with the same object set
i. if A has a left action on N then 0A(x,sn)n = 0A(x,tn) and −an = a (−n) = −an,

ii. if A has a right action on N then n0A(tn,y) = 0A(sn,y) and n−a′
= (−n)

a′
= −na′

for all n ∈ N, a, a′ ∈ A, x, y ∈ A0 with ta = sn, tn = sa′.

Definition 7. [18, Chapter I, Definition 1.3.2] Let A be an R-algebroid and N be a pre-R-
algebroid with the same object set and let A have an associative action on N. A pre-R-
algebroid morphism η : N → A is called a crossed module of R-algebroids if the conditions

CM1) η (an) = a (ηn) and η
(
na′

)
= (ηn) a′

CM2) nηn′
= nn′ = ηnn′

are satisfied for all a, a′ ∈ A, n, n′ ∈ N with ta = sn, tn = sa′ = sn′. η is called a
precrossed module of R-algebroids if it satisfies CM1.
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Remark 2. Note from the definition that a crossed module is a precrossed module satisfying
CM2. Moreover, if η : N → A is a (pre)crossed module then each homset of N and of A is
an R-module and so is not empty. Therefore, for each x ∈ A0 there exist morphisms a∈A
and n∈N with x= sa and ta= sn. Hence, an ∈ N(x, tn) and η (an) ∈ A(ηx, ηtn). But,
η (an) = a (ηn) ∈ A(x, tηn) and so ηx = x, which means that η is the identity on A0.

Example 1. [18, Chapter I, p. 12] If A is an R-algebroid and I is a two-sided ideal of A
then the inclusion i : I → A is a crossed module, where A acts on I by composition.

Proposition 1. [18,Chapter I, Remark 1.3.6 & Propopsition 1.3.7] Given a pre-R-algebroid
morphism f : A → B, the family Kerf = {Kerf (x, y) ⊆ A(x, y) : x, y ∈ A0}, where
Kerf (x, y) = {a ∈ A(x, y) : fa = 0(= 0B(fx,fy))}, is a two-sided ideal of A and the family
Imf = {f (A (x, y)) ⊆ B (fx, fy) : x, y ∈ A0} is a pre-R-subalgebroid of B. If f is a
morphism of R-algebroids then Imf is an R-subalgebroid and if f is a (pre)crossed module
then Imf is two-sided ideal of B.

Definition 8. [18,Chapter I, Definition 1.3.3] Given two (pre)crossed modules N =(η : N→
A) and N ′ =(η′ : N′ →A′) of R-algebroids, if f : N → N′ is a pre-R-algebroid morphism,
g : A → A′ is an R-algebroid morphism and the conditions

CMM1) f (an) = ga (fn) and f
(
na′

)
= (fn)

ga′

CMM2) η′f = gη

are satisfied for all a, a′ ∈ A, n ∈ N with ta = sn, tn = sa′ then the pair (f, g) is called a
(pre)crossed module morphism, of R-algebroids, from N to N ′ and we write (f, g) : N →
N ′ for denoting it.

Remark 3. Note in the definition above that gηx = η′fx for each x ∈ A0 by CMM2. But,
as explained in Remark 2, η and η′ are equal to the identities on A0 and A′

0, respectively.
Therefore, gx = gηx = η′fx = fx meaning that if (f, g) is a (pre)crossed module morphism
then f and g are equal to each other on the object set.

Proposition 2. If f : A → B and f ′ : B → C are (pre-)R-algebroid morphisms then the
assignment f ′f : A → C defined by (f ′f) (x) = f ′ (fx) on A0 and by (f ′f) (a) = f ′ (fa) on
Mor (A) is a (pre-)R-algebroid morphism.

Proposition 3. All precrossed modules of R-algebroids and their morphisms form a cat-
egory, denoted by PXAlg (R), in which the composition of any two composible morphisms
(f, g) and (f ′, g′) is defined pointwisely by (f ′, g′) (f, g) = (f ′f, g′g), where f ′f and g′g are
the corresponding composite pre-R-algebroid and R-algebroid morphisms. With the same
composition, all crossed modules of R-algebroids and their morphisms form a category, de-
noted by XAlg (R), which is clearly a full subcategory of PXAlg (R).

3 (Pre)cat1-R-algebroids

Cat1-algebras and more generally catn-algebras were introduced by Ellis in [10, 11]. In this
section, as a generalisation of cat1-algebras, we shall introduce the notion of a precat1- and
a cat1-R-algebroid.

Throughout this section and subsequent sections, an endomorphism of an R-algebroid
A will stand for an R-algebroid morphism from A to A:
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Definition 9. Given an R-algebroid A and two endomorphisms u and v of A, both being
the identity on A0, the triple A = (A, u, v) is called a cat1-R-algebroid if the conditions

CAT1) uv = v and vu = u

CAT2) KeruKerv = 0A = KervKeru ,

where Keru and Kerv are defined as in Proposition 1 and their product as in Definition 5
and where 0A =

{
0A(x,y) : x, y ∈ A0

}
, are satisfied. A is called a precat1-R-algebroid if it

satisfies CAT1.

Note from the definition that a cat1-R-algebroid is a precat1-R-algebroid satisfying CAT2
and that if A = (A, u, v) is a (pre)cat1-R-algebroid then (Keru)0 = (Kerv)0 = (Imu)0 =
(Imv)0 = A0.

Definition 10. Given two (pre)cat1-R-algebroids A = (A, u, v) and A′ = (A′, u′, v′), a
(pre)cat1-R-algebroid morphism {f} :A→A′ consists of an R-algebroid morphism f :A→
A′ satisfying the condition

CATM) fu = u′f and fv = v′f

Proposition 4. All precat1-R-algebroids and their morphisms form a category, denoted by
PCat1-Alg (R), in which the composition of any two composible morphisms {f} : A → A′

and {f ′} : A′ → A′′ is defined by {f ′} {f} = {f ′f}, where f ′f is the corresponding com-
posite R-algebroid morphism. Similarly, with the same composition, all cat1-R-algebroids
and their morphisms form a category, denoted by Cat1-Alg (R). Obviously, Cat1-Alg (R) is
a full subcategory of PCat1-Alg (R).

Proposition 5. If A = (A, u, v) is a precat1-R-algebroid then for all b ∈ Imu ∪ Imv

ub = vb = b (3.1)

Proof. If b ∈ Imu then there exists an a ∈ A with b = ua, and so vb = vua. But, vua = ua
by CAT1. Thus, vb = vua = ua = b meaning that the second equality holds. Moreover,
ub = uvb by the equality b = vb just verified and uvb = vb by CAT1. So, ub = uvb = vb
meaning that the first equality holds as well. A similar argument proves the same result
when b ∈ Imv.

Corollary 2. For any precat1-R-algebroid A = (A, u, v) the following hold:

i. Imu = Imv (3.2)

ii. uu = u and vv = v (3.3)

iii. a− ua ∈ Keru and a− va ∈ Kerv for all a ∈ A (3.4)

Proof. i. b∈ Imu ⇒ b=vb by (3.1) ⇒ b∈ Imv ⇒ Imu ⊆ Imv. Similarly, Imv ⊆ Imu and so
Imu = Imv.
ii. For all a ∈ A, va ∈ Imv and so vva = va by (3.1), meaning that vv = v. Similarly,
uu = u.
iii. For all a ∈ A, uua = ua by (3.3). Therefore, u (a− ua) = ua − uua = ua − ua = 0,
meaning that a− ua ∈ Keru. Similarly, a− va ∈ Kerv.
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4 Equivalence between PCat1-Alg (R) and PXAlg (R)

In this section, we shall first construct two functors, one from PCat1-Alg (R) to PXAlg (R)
and one in the opposite direction, and then prove that each of the functors defined is an
equivalence of categories.

4.1 Construction of the functors

Given a precat1-R-algebroid A = (A, u, v), we define ηA : Keru → Imu as the identity on
A0 and by

ηAa = va (4.1)

on morphisms.

Proposition 6. NA = (ηA : Keru → Imu) is a precrossed module of R-algebroids.

Proof. Keru is a two-sided ideal, thus a pre-R-subalgebroid, and Imu is an R-subalgebroid
of A by Proposition 1, ηA is clearly a pre-R-algebroid morphism and Imu has an associative
action on Keru defined as the composition in A. Moreover, for all a ∈ Keru and b, b′ ∈ Imu
with tb′ = sa and ta = sb

ηA

(
ab
)
= v (ab) = (va) (vb) = (ηAa) b,

where vb = b by (3.1), and similarly ηA(
b′a) = b′ (ηAa), meaning that CM1 is satisfied.

Proposition 7. Given two precat1-R-algebroids A = (A, u, v) and A′ = (A′, u′, v′) and
a precat1-R-algebroid morphism {f} : A → A′, the pair (fKeru, fImu) of f ’s restrictions
fKeru : Keru → Keru′ and fImu : Imu → Imu′ is a precrossed module morphism from NA

to NA′ .

Proof. For all a ∈ Keru and b ∈ Imu, noting that fu = u′f by CATM for f and that b = ub
by (3.1)

u′fKerua = u′fa = fua = f0 = 0 and fImub = fb = fub = u′fb

meaning that fKerua ∈ Keru′ and fImub ∈ Imu′. Hence, fKeru and fImu are well-defined,
since so is f , and the verification that fKeru is a pre-R-algebroid morphism and fImu is an
R-algebroid morphism is straightforward, since all we need are inherited from f . Moreover,

fKeru

(
ab
)
= f (ab) = fafb = (fa)

fb
= (fKerua)

fImub

and similarly fKeru(
b′a) = fImub

′
(fKerua) for all a ∈ Keru and b, b′ ∈ Imu with ta = sb and

tb′ = sa, meaning that CMM1 is satisfied. Furthermore, ηA′ fKeru = fImuηA , since v
′f = fv

by CATM for f , and thus CMM2 is satisfied.

Then, a direct calculation proves the following proposition:

Proposition 8. The assignment F : PCat1-Alg (R) → PXAlg (R) defined by FA = NA

on objects and by F {f} = (fKeru, fImu) on morphisms is a functor.



274 Equivalence between (pre)cat1-R-algebroids and (pre)crossed modules of R-algebroids

Now, to develop an inverse functor we define the semidirect product pre-R-algebroid AnN
for a precrossed module N = (η :N→A) of R-algebroids as in [2], where in brief, we

i. set AnN as the family {(AnN) (x, y) : x, y ∈ A0} such that (AnN) (x, y) = {(a, n) :
a ∈ A(x, y) , n ∈ N(x, y)},

ii. define on each (AnN) (x, y) an addition by (a, n) + (a1, n1) = (a+ a1, n+ n1) and
an R-action by r · (a, n) = (r · a, r · n),

iii. take (AnN)0 = A0 and define s, t : Mor (AnN) → (AnN)0, the source and target
functions respectively, by s (a, n) = sa (= sn) and t (a, n) = ta (= tn),

iv. define a composition on AnN by (a, n) (a′, n′) = (aa′, na′
+an′+nn′) for all morphisms

(a, n), (a′, n′) with t (a, n) = s (a′, n′).

Proposition 9. AnN is an R-algebroid.

Proof. As proved in [2] (Sect. 4, Proposition 4), A n N is a pre-R-algebroid. Moreover, a
direct calculation shows for each x ∈ A0 that the pair

(
1x, 0N(x,x)

)
is the identity on x,

completing the proof.

Now, in a similar way to that used in [19], we define uη, vη : AnN → AnN as the identity
on objects and by

uη (a, n) = (a, 0N(sa,ta)) and vη (a, n) = (a+ ηn, 0N(sa,ta)) (4.2)

on morphisms.

Proposition 10. uη and vη are endomorphisms of AnN.

Proof. We restrict the proof only to verifying that vη preserves the composition, since the
rest are clear: For all (a, n), (a′, n′) ∈ AnN with t (a, n) = s (a′, n′)

vη ((a, n) (a
′, n′)) = vη(aa

′, na′
+ an′ + nn′) = (aa′ + η(na′

+ an′ + nn′), 0)

= (aa′ + (ηn) a′ + a (ηn′) + (ηn) (ηn′) , 0)

= (a+ ηn, 0) (a′ + ηn′, 0) = vη (a, n) vη (a
′, n′) ,

as required.

Proposition 11. Nn = (AnN,uη, vη) is a precat1-R-algebroid.

Proof. uη, vη are endomorphisms of AnN by Proposition 10. Moreover, for all (a, n) ∈ AnN

uηvη (a, n) = uη (a+ ηn, 0) = (a+ ηn, 0) = vη (a, n) ,

by (4.2), meaning that uηvη = vη. Similarly, vηuη = uη and thus CAT1 is satisfied.
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Proposition 12. Given two precrossed modules N = (η : N → A) and N ′ = (η′ : N′ → A′)
of R-algebroids and a precrossed module morphism (f, g) : N → N ′, if σf

g : AnN → A′nN′

is defined by σf
g (x, y) = (gx, fy) on objects and by

σf
g (a, n) = (ga, fn) (4.3)

on morphisms then
{
σf
g

}
forms a precat1-R-algebroid morphism from Nn to N ′n.

Proof. A direct calculation proves that σf
g is an R-algebroid morphism. Moreover, for all

(a, n) ∈ AnN(
vη′σf

g

)
(a, n) = vη′ (ga, fn) = (ga+ η′fn, 0) = (ga+ gηn, 0)

= (g (a+ ηn) , 0) = σf
g (a+ ηn, 0) =

(
σf
g vη

)
(a, n) ,

where η′fn = gηn by CMM2 for (f, g), meaning that vη′σf
g = σf

g vη. Similarly, uη′σf
g = σf

guη

and thus CATM is satisfied.

A direct calculation proves the following proposition:

Proposition 13. For any two precrossed module morphisms (f, g) : N → N ′ and (f ′, g′) :
N ′ → N ′′

σf ′

g′ σ
f
g = σf ′f

g′g .

Proposition 14. The assignment G : PXAlg (R) → PCat1-Alg (R) defined by GN = Nn

on objects and by G (f, g) =
{
σf
g

}
on morphisms is a functor.

Proof. G is well-defined on both objects and morphisms and it preserves the composition,
by Proposition 11, 12 and 13. Moreover, for any precrossed module N and precrossed
module morphism (f, g) : N → N ′ of R-algebroids, obviously G (f, g) is from GN to GN ′

and G {idN } = idGN , as required.

4.2 Construction of the equivalence

Given a precat1-R-algebroid A = (A, u, v), using the two functors F and G, we can get the
precat1-R-algebroid

GFA = GNA = (NA)
n
=

(
ImunKeru, uηA

, vηA

)
,

in which

i. FA = NA = (ηA : Keru → Imu), where ηAa = va by (4.1), and (ImunKeru)0 = A0,
and

ii. uηA
(b, a) = (b, 0) and vηA

(b, a) = (b+ηAa, 0) = (b+va, 0) for all (b, a)∈ ImunKeru, by
(4.2).
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Now, we define αA : A → ImunKeru and βA : ImunKeru → A as the identity on A0 and
by

αAa = (ua, a− ua) and βA (b, a) = b+ a (4.4)

on morphisms.

Lemma 1. {αA} is a precat1-R-algebroid morphism from A to (NA)
n
.

Proof. a − ua ∈ Keru by (3.4) and therefore αAa = (ua, a− ua) ∈ Imu n Keru for all
a ∈ A. In addition, αA is well-defined, since so is u, and it clearly preserves the addition
and R-action. Moreover,

αA (aa′) = (u (aa′) , aa′ − u (aa′)) = ((ua) (ua′) , aa′ − (ua) (ua′))

= ((ua) (ua′) , (a− ua)ua′ + ua (a′ − ua′) + (a− ua) (a′ − ua′))

= ((ua) (ua′) , (a− ua)
ua′

+ ua (a′ − ua′) + (a− ua) (a′ − ua′))

= (ua, a− ua) (ua′, a′ − ua′) = (αAa) (αAa
′)

and αA1x = (u1x, 1x − u1x) = (1x, 1x − 1x) =
(
1x, 0N(x,x)

)
for all a, a′ ∈ A with ta = sa′

and for all x ∈ A0, meaning that αA is an R-algebroid morphism. Furthermore, for all
a ∈ A

(uηA
αA) (a) = uηA

(ua, a− ua) = (ua, 0) = (ua, ua− ua)

= (uua, ua− uua) = αA (ua) = (αAu) (a) ,

where uua = ua by (3.3), and

(vηA
αA) (a) = vηA

(ua, a− ua) = (ua+ v (a− ua) , 0) = (ua+ va− vua, va− va)

= (ua+ uva− ua, va− uva) = (uva, va− uva) = αA (va) = (αAv) (a) ,

where va = uva and vua = ua by CAT1 for A. So, we get uηA
αA = αAu and vηA

αA = αAv,
meaning that CATM is satisfied.

Lemma 2. {βA} is a precat1-R-algebroid morphism from (NA)
n

to A.

Proof. A direct calculation shows that βA is an R-algebroid morphism from ImunKeru to
A. Moreover,

(vβA) (b, a) = v (b+ a) = vb+ va = b+ va = βA (b+ va, 0) = (βAvηA
) (b, a)

for all (b, a) ∈ Imu n Keru, where vb= b by (3.1), meaning that vβA = βAvηA
. Similarly,

uβA =βAuηA
and thus CATM is satisfied.

Up to now, given a precat1-R-algebroid A = (A, u, v), we have constructed two precat1-R-
algebroid morphisms, {αA} and {βA}, the first of which is from A to GFA and the latter
is in the opposite direction. Below, we shall do the same in the category of precrossed
modules of R-algebroids:
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Let N = (η : N → A) be a precrossed module of R-algebroids. Using the two functors
F and G, we can get the precrossed module

FGN = FNn = NNn =
(
η
Nn : Keruη → Imuη

)
,

in which

i. GN = Nn = (AnN, uη, vη), where uη (a, n) = (a, 0) and vη (a, n) = (a+ ηn, 0) by
(4.2), Keruη =

{
(0, n) =

(
0A(sn,tn), n

)
: n ∈ N

}
, Imuη =

{
(a, 0) =

(
a, 0N(sa,ta)

)
: a ∈ A

}
and (Keruη)0=(Imuη)0=A0, and

ii. η
Nn (0, n) = vη (0, n) = (0 + ηn, 0) = (ηn, 0) for all (0, n) ∈ Keruη, by (4.1) and (4.2).

Now, we define δη
N
: Keruη → N, δη

A
: Imuη → A, λη

N
: N → Keruη and λη

A
: A → Imuη as

the identity on objects and by

δη
N
(0, n) = n, δη

A
(a, 0) = a, λη

N
n = (0, n) , λη

A
a = (a, 0) (4.5)

on morphisms.
A direct calculation proves the following lemma:

Lemma 3. The pair
(
δη
N
, δη

A

)
is a precrossed module morphism from NNn to N and the

pair
(
λη

N
, λη

A

)
is a precrossed module morphism in the opposite direction.

Theorem 1. The functor F (and G) is an equivalence of categories between PCat1-Alg (R)
and PXAlg (R).

Proof. Given a precat1-R-algebroid A = (A, u, v), {αA} : A → (NA)
n
and {βA} : (NA)

n →
A are precat1-R-algebroid morphisms by Lemma 1 and 2, respectively. Moreover, by (4.4)

(αAβA) (b, a) = αA (b+ a) = (u (b+ a) , (b+ a)− u (b+ a))

= (ub+ ua, b+ a− ub− ua) = (b, a)

for all (b, a) ∈ Imu n Keru, where ub = b by (3.1) and ua = 0 since a ∈ Keru. That
is, αAβA = idImunKeru. A similar calculation shows that βAαA = idA. Therefore, αA

(and βA) is an R-algebroid isomorphism and thus {αA} (and {βA}) is an isomorphism in
PCat1-Alg (R).

Furthermore, for all {f} : A → A′ in PCat1-Alg (R) with A′ = (A′, u′, v′), noting that

GF {f} = G (fKeru, fImu) =
{
σfKeru

fImu

}
and fu = u′f by CATM for {f},

(σfKeru

fImu
αA) (a) = σfKeru

fImu
(ua, a− ua) = (fImuua, fKeru (a− ua))

= (fua, fa− fua) = (u′fa, fa− u′fa) =
(
αA′ f

)
(a)

for all a ∈ A. That is, σfKeru

fImu
αA = αA′ f and so (GF {f}) {αA} =

{
αA′

}
{f}, meaning that

the diagram

A
{αA} //

{f}

��

GFA = (NA)
n
=

(
ImunKeru, uηA

, vηA

)
GF{f}=

{
σ
fKeru
fImu

}
��

A′
{αA′}

// GFA′ =
(
NA′

)n
=

(
Imu′ nKeru′, uη

A′
, vη

A′

)
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is commutative. Thus, the family α =
{
{αA} : A ∈ PCat1-Alg (R)

}
is a natural iso-

morphism between the identity functor IPCat1-Alg(R) and the composite functor GF on

PCat1-Alg (R).
On the other hand, given a precrossed module N = (η : N → A) of R-algebroids, the

pair
(
δη
N
, δη

A

)
defined by (4.5) is a precrossed module morphism by Lemma 3. It can also be

shown through direct calculations that
(
δη
N
, δη

A

)
is an isomorphism of precrossed modules.

Moreover, for all (f, g) : N → N ′ in PXAlg (R) with N ′ = (η′ : N′ → A′), noting that

FG (f, g) = F
{
σf
g

}
=

((
σf
g

)
Keruη

,
(
σf
g

)
Imuη

)
,(

δη
′

N′

(
σf
g

)
Keruη

)
(0, n) = δη

′

N′ (0, fn) = fn =
(
fδη

N

)
(0, n)

for all (0, n) ∈ Keruη, meaning that δη
′

N′

(
σf
g

)
Keruη

= fδη
N
. A similar calculation shows that

δη
′

A′

(
σf
g

)
Imuη

= gδη
A
. Thus,

(
δη

′

N′ , δ
η′

A′

)
FG (f, g) = (f, g)

(
δη
N
, δη

A

)
, i.e., the diagram

FGN = NNn =
(
η
Nn : Keruη → Imuη

) (δη
N
,δη

A
)

//

FG(f,g)=

(
(σf

g )
Keruη

,(σf
g )

Imuη

)
��

N

(f,g)

��
FGN ′ = NN ′n =

(
η
N′n : Keruη′ → Imuη′

) (
δη

′

N′ ,δ
η′

A′

) // N ′

is commutative, and so the family δ=
{(

δη
N
, δη

A

)
: N =(η : N→A) ∈ PXAlg (R)

}
is a natural

isomorphism between the composite functor FG and the identity functor IPXAlg(R) on
PXAlg (R), as required.

Conclusion 1. The categories PCat1-Alg (R) and PXAlg (R) are equivalent.

5 Equivalence between Cat1-Alg (R) and XAlg (R)

In this section, what we do, in essence, is to upgrade the equivalence between PCat1-Alg (R)
and PXAlg (R) obtained in the previous section to an equivalence between Cat1-Alg (R)
and XAlg (R).
Assume that we are given a cat1-R-algebroid A = (A, u, v):

Proposition 15. The following equalities hold for all a, a′ ∈ Keru with sa = ta′:

a (va′) = aa′ = (va) a′ (5.1)

Proof. va′ − a′ ∈ Keru by (3.4) and so a (va′) − aa′ = a (va′ − a′) = 0 by CAT2 for A,
meaning that a (va′) = aa′. A similar argument proves the right-hand equality aa′ = (va) a′.

Proposition 16. NA = (ηA : Keru → Imu) is a crossed module.
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Proof. NA is a precrossed module by Proposition 6. Moreover, thanks to (5.1),

aηAa′
= ava

′
= a (va′) = aa′ = (va) a′ = vaa′ = ηAaa′

for all a, a′ ∈ Keru with ta = sa′. So, CM2 is satisfied for NA , as required.

Now, assume that we are given a crossed module N = (η : N → A) of R-algebroids:

Proposition 17. Nn = (AnN, uη, vη) is a cat1-R-algebroid.

Proof. Nn is a precat1-R-algebroid by Proposition 11. Moreover, Keruη = {(0, n) : n ∈ N}
and

(a, n) ∈ Kervη ⇔ vη (a, n) = (0, 0) ⇔ (a+ ηn, 0) = (0, 0) ⇔ a = −ηn

for any (a, n) ∈ A n N, meaning that Kervη = {(−ηn, n) : n ∈ N}. Thus, for all n, n′ ∈ N
with tn = sn′

(0, n) (−ηn′, n′) =
(
0 (−ηn′) , n−ηn′

+ 0n
′
+ nn′

)
= (0,−nn′ + nn′) = (0, 0) ,

where n−ηn′
= −nn′ by CM2 for N , meaning that KeruηKervη = 0AnN. Similarly,

KervηKeruη=0AnN and so CAT2 is satisfied for Nn.

Now, we define the functors F̃ : Cat1-Alg (R) → XAlg (R) and G̃ : XAlg (R) → Cat1-Alg (R)
respectively as the restrictions of the functors F and G defined in Sect. 4.1, i.e., by F̃A = NA

and G̃N = Nn on objects and by F̃ (f) = (fKeru, fImu) and G̃ (f, g) =
{
σf
g

}
on morphisms.

Theorem 2. The functor F̃ (and G̃) is an equivalence of categories between Cat1-Alg (R)
and XAlg (R).

Proof. Given a precat1-R-algebroid A and a precrossed module N = (η : N → A) of R-
algebroids, we have already constructed in Sect. 4.2 two precat1-R-algebroid isomorphisms,
{αA} from A to GFA and {βA} in the opposite direction, and two precrossed module
isomorphisms,

(
δη
N
, δη

A

)
from FGN to N and

(
λη

N
, λη

A

)
in the opposite direction. It is clear

that {αA} and {βA} are also cat1-R-algebroid isomorphisms from A to G̃F̃A and from
G̃F̃A to A, respectively, and

(
δη
N
, δη

A

)
and

(
λη

N
, λη

A

)
are precrossed module isomorphisms

from F̃ G̃N to N and from N to F̃ G̃N , respectively, in this current case, where A is a
cat1-R-algebroid and N is a crossed module of R-algebroids. Therefore, the proof is almost
the same as that of Theorem 1.

Conclusion 2. The categories Cat1-Alg (R) and XAlg (R) are equivalent.



280 Equivalence between (pre)cat1-R-algebroids and (pre)crossed modules of R-algebroids

6 Consequences and Applications

6.1 Consequences

As stated and proved by Mac Lane in [14] (Sect. 4, Theorem 1) in a more general set-
ting, the equivalence between the categories Cat1-Alg (R) and XAlg (R) have the following
consequences:

CS1. F̃ is both a left and a right adjoint of the functor G̃.

CS2. Each of the functors F̃ and G̃ is full and faithfull.

CS3. For each N ∈XAlg (R) there exists an A∈Cat1-Alg (R) with F̃A∼=N , and such an
A is G̃N =Nn.

CS4. For each A∈Cat1-Alg (R) there exists an N ∈XAlg (R) with G̃N ∼=A, and such an
N is F̃A=NA .

The same consequences apply for the equivalence between the categories PCat1-Alg and
PXAlg (R).

Remark 4. Since F̃ is full, by CS2, for any morphism (f1, f2) : F̃A → F̃A′ there exists
a morphism {f} :A→A′ with F̃ {f}=(f1, f2), and from the commutative diagram below,

such a morphism {f} must satisfy the equalities {f}=
{
βA′

}
(G̃F̃ {f}) {αA}={βA′σ

f2
f1
αA}.

So, the map f : A → A′ should be defined by fa = βA′σ
f1
f2
αAa = βA′σ

f1
f2

(ua, a− ua) =
βA′ (f2ua, f1 (a− ua))=f2ua+ f1 (a− ua) on morphisms:

A
{αA}

//

{f}
��

G̃F̃A = (NA)
n
= (ImunKeru, uηA

, vηA
)

G̃F̃{f}=
{
σ
f1
f2

}
��

A′ G̃F̃A′ =
(
NA′

)n
= (Imu′ nKeru′, uη

A′
, vη

A′
)

{β
A′ }

oo

Example 2. Each R-algebroid A determines a cat1-R-algebroid Acat = (A, idA, idA) and
thus the crossed module F̃Acat = NAcat

=
(
ηAcat

: KeridA → ImidA
)
=

(
ηAcat

: 0A → A
)
.

Therefore, given any morphism (f1, f2) : F̃Acat → F̃A′
cat of such crossed modules, the map

f : A → A′ specified in Remark 4 is to be defined by fa = f2a for each a ∈ A, since u = idA.

Example 3. Given a two-sided ideal I of an R-algebroid A, I = (i : I → A) is a crossed
module, where i is the inclusion, as stated in Example 1. Thus, G̃I = In = (An I,ui, vi)
and F̃In =

(
η
In : Kerui → Imui

)
, where ui (a, b) = (a, 0) and vi (a, b) = (a+ b, 0) by (4.2),

Kerui = {(0, b) ∈ An I}, Imui = {(a, 0) ∈ An I} and η
In (0, b) = vi (0, b) = (b, 0) by (4.1).

Consequently, we observe that the pair (ρ1, ρ2) of maps ρ1 : Kerui → I and ρ2 : Imui → I,
which are respectively defined by ρ1 (0, b) = b and ρ2 (a, 0) = a, is an isomorphism in
XAlg (R) from F̃In to I, as required by CS3.

Example 4. The functor G̃ maps the crossed module NAcat
=
(
ηAcat

:0A→A
)
of Example 2

to the cat1-R-algebroid G̃NAcat
= (An0A, uηAcat

, vηAcat
), where uηAcat

(a, 0) = (a, 0) and

vηAcat
(a, 0)=

(
a+ηAcat

0, 0
)
=(a, 0). Then, we see that An0A∼=A, uηAcat

= vηAcat
= idAn0A

and so G̃NAcat

∼=Acat, as required by CS4.
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6.2 An application: The correspondence of the functors (−)cr and
(−)ct

It is sometimes required to get a crossed module from a precrossed module and mostly we
do this by means of Peiffer subgroups or Peiffer ideals. In our study [3], we introduced
Peiffer ideal for a precrossed module of R-algebroids and used it to get a crossed module,
and the procedure gave us the functor (−)

cr
as sketched out in Sect. 6.2.1 below. In this

respect, the question is that “how can we equivalently convert a precat1-R-algebroid into a
cat1-R-algebroid?”. As detailed below, we can do this by using the functors F , (−)

cr
and

G̃ successively. But, our ultimate aim is to develop a shortcut functor, which is naturally
isomorphic to G̃ (−)

cr
F .

6.2.1 Constructing a cat1-R-algebroid via the functor (−)
cr

We recall from Sect. 5 of [3] that the functor (−)
cr

: PXAlg (R) → XAlg (R) assigns to each
precrossed module N = (η : N → A) the crossed module N cr = (ηcr : Ncr → A) and to
each precrossed module morphism (f, g) : N → N ′ the crossed module morphism (f, g)

cr
:

N cr → N ′cr such that

i. Ncr = NJN,NK =
{

NJN,NK (x, y) = N(x,y)JN,NK(x,y) : x, y ∈ A0

}
, where

i1. the family JN,NK = {JN,NK (x, y) : x, y ∈ A0} is the Peiffer ideal of N,

i2. JN,NK (x, y) is the subgroup, and an R-submodule, of N (x, y) generated by the
set of Peiffer commutators JN,NKg (x, y) = {Jn, n′K1, Jn, n′K2 : n, n′ ∈ N, sn =
x, tn = sn′, tn′ = y},

i3. the Peiffer commutators of n, n′ ∈ N with tn = sn′ are defined by Jn, n′K1 =
nηn′ − nn′ and Jn, n′K2 = ηnn′ − nn′,

ii. ηcr is defined as the identity on A0(= N0) and by ηcrn = ηn on morphisms, where
n = n+ JN,NK (sn, tn), and

iii. (f, g)
cr

= (f cr, g), where f cr is defined by f crn = fn on morphisms.

Now, assume that we are given a precat1-R-algebroid A = (A, u, v). Then, the func-
tor F from PCat1-Alg (R) to PXAlg (R) gives us the precrossed module FA = NA =
(ηA : Keru → Imu), where ηAa = va on morphisms, and the functor (−)

cr
gives the crossed

module
(NA)

cr
= (ηcr

A
: (Keru)

cr → Imu) ,

where (Keru)
cr

= KeruJKeru,KeruK , in which JKeru,KeruK = {JKeru,KeruK (x, y) : x, y ∈ A0}
where each homset JKeru,KeruK (x, y) is the R-submodule of Keru (x, y) generated by the
set JKeru,KeruKg (x, y) = {Ja, a′K1, Ja, a′K2 : a, a′ ∈ Keru, sa = x, ta = sa′, ta′ = y} of

Peiffer commutators Ja, a′K1 = aηAa′ − aa′ = ava
′ − aa′ and Ja, a′K2 = vaa′− aa′, and where

ηcr
A
a = ηAa = va on morphisms.

Then, the functor G̃ from XAlg (R) to Cat1-Alg (R) gives us the cat1-R-algebroid

G̃ (NA)
cr
= (NA)

cr-n
= (Imun (Keru)

cr
, uηcr

A
, vηcr

A
),

where
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i. uηcr
A
(b, a) =

(
b, 0

)
and vηcr

A
(b, a) =

(
b+ ηcr

A
a, 0

)
=

(
b+ va, 0

)
for all (b, a) ∈ Imu n

(Keru)
cr
,

ii. Keruηcr
A

=
{
(b, a) ∈ Imun (Keru)

cr
: uηcr

A
(b, a)=

(
0, 0

)}
= {(0, a) : a ∈ Keru, 0 ∈

Imu (sa, ta)}, and
iii. Kervηcr

A
=

{
(b, a) ∈ Imun (Keru)

cr
: vηcr

A
(b, a) =

(
0, 0

)}
= {(−va, a) : a ∈ Keru} .

A direct calculation shows in (NA)
cr-n

that the equalities uηcr
A
vηcr

A
= vηcr

A
and vηcr

A
uηcr

A
= uηcr

A
hold and thus CAT1 is satisfied. Moreover, for all a, a′ ∈ Keru with ta = sa′

(0, a)
(
−va′, a′

)
=

(
0 (−va) , a−va′

+ 0 (−va′) + aa′
)
=

(
0,−ava′ + aa′

)
=

(
0, 0

)
,

where −ava′ + aa′ = −ava
′
+ aa′ + JKeru,KeruK (sa, ta′) = JKeru,KeruK (sa, ta′) = 0(=

0(Keru)cr(sa,ta′)) since −ava
′
+aa′=−Ja, a′K1 and −Ja, a′K1∈ JKeru,KeruK (sa, ta′), meaning

that Keruηcr
A
Kervηcr

A
= 0Imun(Keru)cr . It can similarly be shown that Kervηcr

A
Keruηcr

A
=

0Imun(Keru)cr and thus CAT2 is satisfied, as required.

6.2.2 The functor (−)
ct

In this part, for any precat1-R-algebroid A = (A, u, v) in order to directly obtain a cat1-R-
algebroid, which is isomorphic to G̃ (−)

cr
FA = (NA)

cr-n
, we shall develop a shortcut

functor from PCat1-Alg (R) to Cat1-Alg (R) and to this end we shall use the ideal LA,AM of
A, which is the ideal corresponding to the Peiffer ideal JKeru,KeruK of FA and is obtained
by redescribing the generators of JKeru,KeruK for precat1-R-algebroids. Now, assume that
we are given a precat1-R-algebroid A = (A, u, v):

Lemma 4. JKeru,KeruKg (x, y) = (KeruKerv) (x, y) ∪ (KervKeru) (x, y) for all x, y ∈ A0.

Proof. For any Ja, a′K1, Ja, a′K2 ∈ JKeru,KeruKg (x, y)
Ja, a′K1 = ava

′
− aa′ = a (va′)− aa′ = a (va′ − a′) ∈ (KeruKerv) (x, y) ,

since va′ − a′ ∈ Kerv by (3.4). Similarly, Ja, a′K2 ∈ (KervKeru) (x, y) and thus

JKeru,KeruKg (x, y) ⊆ (KeruKerv) (x, y) ∪ (KervKeru) (x, y) (6.1)

Note on the other hand that any a ∈ (KeruKerv) (x, y) is of the form auav for some
au ∈ Keru and av ∈ Kerv with sau = x, tau = sav, tav = y and so

a = auav = au (av − vav − uav + vuav) = au (v (uav − av)− (uav − av)) = Jau, uav − avK1,
where vav = 0 since av ∈ Kerv, vuav = uav by CAT1 and uav−av ∈ Keru by (3.4). Hence,
a ∈ JKeru,KeruKg (x, y) and thus (KeruKerv) (x, y) ⊆ JKeru,KeruKg (x, y). A similar cal-
culation shows that (KervKeru) (x, y) ⊆ JKeru,KeruKg (x, y) and therefore

(KeruKerv) (x, y) ∪ (KervKeru) (x, y) ⊆ JKeru,KeruKg (x, y) (6.2)

Consequently, we get from (6.1) and (6.2) that

JKeru,KeruKg (x, y) = (KeruKerv) (x, y) ∪ (KervKeru) (x, y)
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Now, let us denote the subset (KeruKerv) (x, y)∪(KervKeru) (x, y) of A (x, y) by LA,AMg (x, y)
and let LA,AM (x, y) be the subgroup of A (x, y) generated by LA,AMg (x, y). Since each of the
sets (KeruKerv) (x, y) and (KervKeru) (x, y) is closed under the R-action, so is LA,AMg (x, y)
and thus LA,AM (x, y) is an R-submodule of A (x, y). Then, it can be verified through direct
calculations that the family

LA,AM = {LA,AM (x, y) : x, y ∈ A0}

is a two-sided ideal of A and the family

Act =
ALA,AM =

{
ALA,AM (x, y) = A (x, y)LA,AM (x, y) : x, y ∈ A0

}
form an R-algebroid, of which

i. the object set is A0,

ii. the source and target functions, the addition and the composition are all induced by
those of A,

and on which

iii. the R-action is induced by that defined on A.

Then, denoting each morphism a+ LA,AM (sa, ta) of Act by [a], and noting that s [a] = sa
and t [a] = ta, we define the maps uct, vct : Act → Act as the identity on A0 and by

uct [a] = [ua] and vct [a] = [va] (6.3)

on morphisms. Note that uLA,AM = vLA,AM = 0A and thus uct and vct are well-defined,
since so are u and v. Moreover, a direct calculation shows that they are both R-algebroid
morphisms and Act = (Act,uct, vct) is a precat1-R-algebroid.

Remark 5. Since Keru (x, y) is an R-submodule of A(x, y), the equality JKeru,KeruKg (x, y) =LA,AMg (x, y) of generating sets (from Lemma 4) gives the equality

JKeru,KeruK (x, y) = LA,AM (x, y) (6.4)

of R-submodules for all x, y ∈ A0 and thus the equality

JKeru,KeruK = LA,AM (6.5)

of ideals generated.

Proposition 18. [a] ∈ Keruct ⇔ a ∈ Keru and [a] ∈ Kervct ⇔ a ∈ Kerv for all a ∈ A.

Proof. That “ a ∈ Keru ⇒ [a] ∈ Keruct ” is clear. In the opposite direction

[a] ∈ Keruct ⇒ uct [a] = [0] ⇒ [ua] = [0] ⇒ ua ∈ LA,AM ⇒ vua = 0 ⇒ ua = 0 ⇒ a ∈ Keru,

where vua = 0 since vLA,AM = 0A and where vua = ua by CAT1, and this completes the
proof of the first biconditional statement. The proof of the second biconditional statement
is the same.
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Proposition 19. Act = (Act,uct, vct) is a cat1-R-algebroid.

Proof. Keruct = {[a] : a ∈ Keru} and Kervct = {[a] : a ∈ Kerv} by Proposition 18. Then,
for any a ∈ Keru and a′ ∈ Kerv with ta = sa′, noting that aa′ ∈ LA,AM (sa, ta′)

[a] [a′] = [aa′] = aa′ + LA,AM (sa, ta′) = LA,AM (sa, ta′) = 0Act(sa,ta′),

meaning that KeructKervct=0Act . It can similarly be shown that KervctKeruct=0Act , as
required.

The construction above gives us a functor (−)
ct

: PCat1-Alg (R) → Cat1-Alg (R), which
assigns to each precat1-R-algebroid A the cat1-R-algebroid Act and to each precat1-R-
algebroid morphism {f} the cat1-R-algebroid morphism {f}ct = {f ct} such that f ct [a] =
[fa] for all a ∈ A.

6.2.3 The correspondence of the functors (−)
cr

and (−)
ct

Up to now, given a precat1-R-algebroid A = (A, u, v), we have first constructed the cat1-R-
algebroid (NA)

cr-n
= (Imu n (Keru)

cr
, uηcr

A
, vηcr

A
), using the composite functor G̃ (−)

cr
F ,

and then the cat1-R-algebroid Act = (Act,uct, vct), using the functor (−)
ct
. In this final

stage, we shall prove that (NA)
cr-n

and Act are isomorphic to each other and the composite
functor G̃ (−)

cr
F is naturally isomorphic to the functor (−)

ct
, and we shall say, by abuse

of language, that the functor (−)
ct

corresponds to the functor (−)
cr

and vice versa. Now,
assume that we are given a precat1-R-algebroid A = (A, u, v):

Lemma 5. For any b, b′ ∈ Imu and a, a′ ∈ Keru, all with common sources and targets

b = b′ and a = a′ ⇔ b+ a = b′ + a′ ,

where a, a′, b+ a, b′ + a′ ∈ (Keru)
cr
.

Proof. The implication “ b = b′ and a = a′ ⇒ b+ a = b′ + a′ ” is clear. Conversely,
noting that uJKeru,KeruK (x, y) = {

0A(x,y)

}
for all x, y ∈ A0,

b+ a = b′ + a′ ⇒ b+ a+ JKeru,KeruK (sa, ta) = b′ + a′ + JKeru,KeruK (sa, ta)
⇒ b− b′ + a− a′ ∈ JKeru,KeruK (sa, ta)
⇒ u (b− b′ + a− a′) = 0

⇒ ub− ub′ + 0− 0 = 0

⇒ ub = ub′ ⇒ b = b′,

where the last implication holds by (3.1). Thus, the backward implication of the bicondi-
tional statement is partially satisfied. On the other hand, the equality b = b′, which is due
to b = b′, and the equality b+ a = b′ + a′ together gives the needed second equality a = a′,
proving that the backward implication is completely satisfied.

Theorem 3. The cat1-R-algebroids (NA)
cr-n

and Act are isomorphic to each other.
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Proof. Define the map γA : Imun (Keru)
cr → Act by γA (b, a) = [b+ a]. Clearly, γA (b, a) ∈

Act for all (b, a) ∈ Imun (Keru)
cr
. Besides, for all (b, a) ,

(
b′, a′

)
∈ Imun (Keru)

cr

(b, a) =
(
b′, a′

)
⇔ b+ a = b+ a′ by Lemma 5

⇔ b+ a+ JKeru,KeruK (sa, ta) = b′ + a′ + JKeru,KeruK (sa, ta)
⇔ b+ a+ LA,AM (sa, ta) = b′ + a′ + LA,AM (sa, ta) by (6.4)

⇔ [b+ a] = [b′ + a′]

⇔ γA (b, a) = γA

(
b′, a′

)
,

meaning that γA is well-defined and 1-1. In addition, for any [a] ∈ Act, (ua, a− ua) ∈
Imu n (Keru)

cr
and γA (ua, a− ua) = [a], meaning that γA is onto and so is a bijection.

Moreover, direct calculations show that γA is an R-algebroid morphism and thus is an
R-algebroid isomorphism. Furthermore,

γAvηcr
A
(b, a) = γA

(
b+ va, 0

)
= [b+ va+ 0] = [vb+ va] = vct [b+ a] = vctγA (b, a)

for all (b, a) ∈ Imu n (Keru)
cr
, where b = vb by (3.1), meaning that γAuηcr

A
= uctγA .

Similarly, γAvηcr
A

= vctγA and thus {γA} is a cat1-R-algebroid isomorphism from (NA)
cr-n

to Act, as required.

Theorem 4. The functor G̃ (−)
cr
F is naturally isomorphic to the functor (−)

ct
.

Proof. Given a precat1-R-algebroid A = (A, u, v), {γA} is a cat1-R-algebroid isomorphism
from (NA)

cr-n
to Act by Theorem 3. In addition, given a precat1-R-algebroid morphism

{f} : A → A′, noting that G̃ (−)
cr
F {f} = G̃ (fKeru, fImu)

cr
= G̃ (f cr

Keru, fImu) =
{
σ
fcr
Keru

fImu

}
,

for all (b, a) ∈ Imun (Keru)
cr

γA′σ
fcr
Keru

fImu
(b, a) = γA′ (fImub, f

cr
Kerua) = γA′

(
fb, fa

)
= [fb+ fa] = f ct [b+ a] = f ctγA (b, a) .

So, γA′σ
fcr
Keru

fImu
= f ctγA and thus

{
γA′

}(
G̃ (−)

cr
F {f}

)
=

(
(−)

ct {f}
)
{γA}, i.e., the dia-

gram

G̃ (−)
cr
FA = (NA)

cr-n
G̃(−)crF{f}=

{
σ
fcr
Keru

fImu

}
//

{γA}

��

G̃ (−)
cr
FA′ =

(
NA′

)cr-n
{γA′}

��
(−)

ct A = Act

(−)ct{f}={f}ct={fct}
// (−)

ct A′ = A′ct

is commutative, and as a consequence the family γ =
{
{γA} : A ∈ PCat1-Alg (R)

}
is a

natural isomorphism between the functors G̃ (−)
cr
F and (−)

ct
, as required.
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As a final remark, we recall from [3,Proposition 16] that the functor (−)
cr

is the left adjoint
of the natural functor in the opposite direction. Therefore, by the natural isomorphism just
proved we have the following result:

Corollary 3. The functor (−)
ct

is the left adjoint of the inclusion functor Cat1-Alg (R) →
PCat1-Alg (R).

Proof. For any precat1-R-algebroid A and cat1-R-algebroid B, we have the consecutive
natural bijections

Cat1-Alg (R)
(
Act,B

) ∼= Cat1-Alg (R)
(
G̃ (FA)

cr
,B

)
∼= XAlg (R)

(
(FA)

cr
, F̃B

)
∼= PXAlg (R)

(
FA, F̃B

)
∼= PCat1-Alg (R)

(
A, GF̃B

)
∼= PCat1-Alg (R) (A,B) ,

the first of which holds because (−)
ct

is naturally isomorphic to G̃ (−)
cr
F by Theorem 4,

the second because F̃ and G̃ are left adjoints of each other as pointed out in Sect. 6.1, the
third because (−)

cr
is the left adjoint of the natural functor XAlg (R) → PXAlg (R) as

proved in [3, Proposition 16], the fourth because F and G are left adjoints of each other
by Sect. 6.1 and the fifth because F̃B = FB and because GF is naturally isomorphic to
idPCat1-Alg(R) by Theorem 1.

Acknowledgement. The authors would like to thank the anonymous referee for his/her
valuable suggestions.

References
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