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Abstract

In this paper we introduce the relative generalized minimum distance function
(RGMDF for short) and it allows us to give an algebraic approach to the relative
generalized Hamming weights of the projective Reed–Muller–type codes. Also, we
introduce the relative generalized footprint function and it gives a tight lower bound
for the RGMDF, which is much easier to compute.
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1 Introduction

This work is a non–trivial generalization of [24], where the case of an algebraic approach
to the minimum distance of a Reed–Muller–type code is treated, and [16], where a similar
approach is given for the case of the generalized Hamming weights of these codes. The
main goal here is the study of the relative generalized Hamming weights (Definition 4)
of the Reed–Muller–type codes from an algebraic point of view. In order to do this, we
introduce the relative generalized minimum distance function (Definition 1) and the relative
footprint function (Definition 3).

The Reed–Muller–type codes and their parameters have been studied extensively. If X is
a subset of a projective space Ps´1 over a finite field K “ Fq, and CXpdq is the corresponding
Reed–Muller–type code (Definition 5), several cases have been described:

• Projective Reed–Muller codes: X “ Ps´1 [19, 31].

• Generalized Reed–Muller codes: X “ φpAs´1q, where As´1 is an affine space and
φ : As´1 Ñ Ps´1, φpa1, . . . , as´1q “ r1 : a1 : ¨ ¨ ¨ : as´1s [28].

• Reed–Muller–type codes arising from the Segre variety or the Veronese variety: X is
the set of K–rational points of the variety [7, 27].

• Reed–Muller–type codes arising from a complete intersection: X is such that its defin-
ing ideal is a set–theoretic complete intersection [3, 11, 15, 30].

• Codes parameterized by a set of monomials: X is the toric set associated to these
monomials [12, 29].
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• Codes parameterized by the edges of a graph: X is the toric set associated to the
edges of a simple graph [8, 9, 10, 14, 25, 26].

• Affine cartesian codes: X is the image of a cartesian product of subsets of K under
the map Ks´1 Ñ Ps´1, x Ñ rx : 1s [21].

• Projective cartesian codes: X is the image of the cartesian product A1 ˆ ¨ ¨ ¨ ˆAszt⃗0u

under the map Kszt⃗0u Ñ Ps´1, x Ñ rxs [1],

and others.

On the other hand, the relative generalized Hamming weights (RGHW for short) of a
linear code were introduced in [22]. They are a natural generalization of the generalized
Hamming weights introduced by Wei in [33]. The study of the RGHW is motivated because
of their usefulness to protect messages from an adversary in the wire–tap channel of type
II with illegitimate parties. Some properties of the RGHW of q–ary codes are described in
[20] and they are computed in the cases of almost all 4–dimensional linear codes and their
subcodes. Furthermore, some equivalences, inequalities and bounds are given in [34]. The
behavior of the RGHW of one point algebraic geometric codes is analyzed in [5]. In the case
of Hermitian codes, the RGHW are often much larger than the corresponding generalized
Hamming weights. Also some bounds for the RGHW of some codes parameterized by a
set of monomials of the same degree are given in [13]. Particularly, the case of the codes
parameterized by the edges of a connected bipartite graph is developed. Recently, in [6],
the authors use the footprint bound from Gröbner basis theory to establish the true values
of all corresponding RGHW for q–ary Reed–Muller codes in two variables. For the case
of more variables they describe a simple and low complexity algorithm to determine the
parameters.

The contents of this paper are as follows. In section 2 we introduce some concepts that
will be needed throughout the paper. Particularly the definition of the relative generalized
minimum distance function, which coincides with the relative generalized Hamming weights
of certain Reed–Muller–type codes, and the definition of the relative generalized footprint
function, which is a lower bound, easier to compute, for these weights.

In section 3 we show our main results. Theorems 1 and 2 give two algebraic equivalences
for the relative generalized Hamming weights of some Reed–Muller–type codes: the relative
generalized minimum distance function and the relative Vasconcelos function. Also we prove
that in the case of the relative generalized minimum distance function it is not necessary to
analyze all the homogeneous polynomials of degree d. It is enough to study the standard
polynomials (Theorem 3). Finally, in Theorem 4, we show a lower bound for the relative
generalized Hamming weights of some Reed–Muller–type codes which is easier to compute
than the relative generalized minimum distance function

For additional information about Gröbner bases and Commutative Algebra, we refer to
[2, 4, 32]. For basic Coding Theory, we refer to [23].

2 Preliminaries

Let S “ Krt1, . . . , tss “ ‘8
d“0Sd be a polynomial ring over a field K with the standard

grading. Let I ‰ p0q be a graded ideal of S of Krull dimension β, and let Id “ I X Sd. The
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Hilbert function of S{I is given by

HI : N0 Ñ N0,

HIpdq “ dimKpSd{Idq,

where N0 stands for the non–negative integers. It is known that there is a unique polynomial
hIpxq “ aβ´1x

β´1 ` ¨ ¨ ¨ ` a1x ` a0 P Qrxs, aβ´1 ‰ 0, such that hIpdq “ HIpdq for d " 0.
The degree or multiplicity of S{I is the positive integer given by

degpS{Iq “

$

&

%

pβ ´ 1q! ¨ aβ´1 if β ě 1,

dimKpS{Iq if β “ 0.

Particularly, in this work we consider mainly the case of finite fields, and if X is a subset
of a projective space, we use as the graded ideal I the vanishing ideal IX. In this situation,
β “ 1 and the Hilbert polynomial is |X|. Therefore degpS{Iq “ |X|. However, the following
definitions are valid for any field K and any graded ideal I ‰ p0q of Sd.

Let k1 P v0, kw, where k “ HIpdq and va, bw :“ tx P Z : a ď x ď bu. If k1 “ 0 we define
Wd,k1

“ tHu. If k1 ě 1 then let Wd,k1
be the set of all subsets tg1, . . . , gk1

u of Sd such that
g1 ` I, . . . , gk1 ` I are linearly independent over K. Given d P N, k1 P v0, kw, r P v1, k ´ k1w,
G P Wd,k1 , we set

Ud,r,k1,G :“ ttf1, . . . , fru Ď Sd : tf1, . . . , fru Y G is K–linearly independent modulo Iu.

Also, we define

Fd,r,k1,G :“ ttf1, . . . , fru P Ud,r,k1,G : pI : pf1, . . . , frqq ‰ Iu,

where pI : pf1, . . . , frqq “ tf P S : ffi P I for all iu is an ideal quotient. We observe that if
k1 “ 0 then G “ H and Fd,r,k1,G is the set Fd,r introduced in [16].

Definition 1. The relative generalized minimum distance function (RGMDF for short) of
I is the function δI : N ˆ v1, k ´ k1w ˆ v0, kw ˆ Wd,k1 Ñ Z given by

δIpd, r, k1, Gq “

"

degpS{Iq ´ maxtdegpS{pI, F qq : F P Fd,r,k1,Gu if Fd,r,k1,G ‰ H,
degpS{Iq if Fd,r,k1,G “ H.

We notice that if k1 “ 0 then δIpd, r, k1, Gq is equal to the generalized minimum dis-
tance function δIpd, rq that was introduced in [16]. Moreover, if k1 “ 0 and r “ 1 then
δIpd, r, k1, Gq is equal to the minimum distance function δIpdq, that was studied in [24].

On the other hand, let ă be a monomial order on S and let I be a non–zero ideal. If
f P S, f ‰ 0, then f “ c1t

a1 ` ¨ ¨ ¨ ` cmtam with ci P Kzt0u for all i, tai “ tai1
1 ¨ ¨ ¨ tais

s ,
and ta1 ą ¨ ¨ ¨ ą tam . We recall that the leading monomial of f is ta1 and it is denoted by
inăpfq. The initial ideal of I is the monomial ideal

inăpIq “ ptinăpfq : f P I, f ‰ 0uq.

Definition 2. The footprint of S{I, denoted ∆ăpIq, is the set of all the monomials that are
not the leading monomial of any polynomial in I. The elements of the footprint of S{I are
called standard monomials. A polynomial f is called standard if f ‰ 0 and f is a K–linear
combination of standard monomials.
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Actually, if

π : S Ñ S{I,

πpxq “ x ` I,

then πp∆ăpIqq is a basis of S{I as a K–vector space, and the image of the standard
polynomials of degree d is Sd{Id. Hence, if I is a graded ideal, |∆ăpIq X Sd| “ HIpdq.

Furthermore, if ă is a monomial order on S and ∆ăpIqd :“ ∆ăpIq X Sd, then we set

µă,d,r,k1,G :“ttta1 , . . . , taru Ă ∆ăpIqd : ta1 , . . . , tar , inăpg1q, . . . , inăpgk1
q are distinct

monomials, and pină pIq : pMqq ‰ ină pIqu.

Notice that, for the goal of this work, there is no loss of generality if we consider that
inăpg1q, . . . , inăpgk1

q are distinct monomials for any G P Wd,k1
(see the induction process

in the proof of [16, Proposition 4.8] and the codes defined in Eq. (2.1)).

Definition 3. The relative generalized footprint function (RGFF for short) of I is the
function fpI : N ˆ v1, k ´ k1w ˆ v0, kw ˆ Wd,k1

Ñ Z given by

fpIpd, r, k1, Gq “
"

degpS{Iq ´ maxtdegpS{pinăpIq,Mqq : M P µă,d,r,k1,Gu if µă,d,r,k1,G ‰ H,
degpS{Iq if µă,d,r,k1,G “ H.

We observe that if k1 “ 0 then fpIpd, r, k1, Gq is equal to the generalized footprint func-
tion fpIpd, rq that was introduced in [16]. Moreover, if k1 “ 0 and r “ 1 then fpIpd, r, k1, Gq

is equal to the footprint function fpIpdq, that was studied in [24]. Now, to relate these
concepts with the relative generalized Hamming weights of certain linear codes, we need to
recall this definition. Let C be an rs, ks linear code, that is, C is a linear subspace of Ks,
where K is a finite field with q elements, dimC “ k, and let C1 be a subspace of C with
dimC1 “ k1.

Definition 4. The rth relative generalized Hamming weight of C and C1 is given by

MrpC,C1q “ mint |supp pDq| : D is a subspace of C, dimpDq “ r, D X C1 “ t⃗0uu,

for all r “ 1, . . . , k ´ k1.

In particular note that if r “ 1 one has

M1pC,C1q “ mintwpxq : x P CzC1u,

where wpxq is the Hamming weight of x (the number of non–zero entries of x). In the case
that C1 “ t⃗0u, we obtain the rth generalized Hamming weight of C,

δrpCq “ mint |supp pDq| : D is a subspace ofC, dimpDq “ ru.

That is, δrpCq “ MrpC, t⃗0uq for all r “ 1, . . . , k. Moreover, the linear codes where these
concepts match are the projective Reed–Muller-type codes. We recall their definition. Let
K “ Fq be a finite field with q elements, let Ps´1 be a projective space over K and let
X “ tP1, . . . , Pmu be a subset of Ps´1. We assume that the points of X are in standard
position, that is, the first non–zero entry is 1.
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Definition 5. The projective Reed–Muller–type code of degree d on X is the image of the
following evaluation map:

ev : Sd Ñ Km,

f Ñ pfpP1q, . . . , fpPmqq,

and it is denoted by CXpdq. The vanishing ideal of X, denoted IX, is the ideal of S generated
by the homogeneous polynomials that vanish at all points of X.

From now on we will use the following notation: if f P Sd then Λf :“ pfpP1q, . . . , fpPmqq P

CXpdq, that is, Λf “ ev pfq. Furthermore, if G P Wd,k1
, we set

CXpd, k1, Gq :“ tΛg P Km : g P xGyu, (2.1)

where xGy is the subspace of Sd generated by G. Notice that CXpd, k1, Gq is a subspace of
CXpdq. Actually, if k1 “ 0 then G “ H and CXpd, k1, Gq “ t⃗0u. The main goal of this paper
is to show that MrpCXpdq, CXpd, k1, Gqq “ δIXpd, r, k1, Gq ě fpIXpd, r, k1, Gq for all d ě 1,
0 ď k1 ď k, 1 ď r ď k ´ k1, and G P Wd,k1

. It gives us an efficient lower bound for the
relative generalized Hamming weights of the Reed–Muller–type codes that is much easier
to compute than the RGMDF.

3 Main results

Lemma 1. Let X Ď Ps´1 and I “ IX its vanishing ideal. Let h1, . . . , hl P Sd, l ď k. Then
h1 ` I, . . . , hl ` I are linearly independent over K if and only if Λh1

, . . . ,Λhl
are linearly

independent vectors of CXpdq.

Proof. ñ) Suppose that h1`I, . . . , hk1
`I are linearly independent overK. If

řl
i“1 aiΛhi

“

0⃗ for some ai P K, then
řl

i“1 aihi P I. Thus ai “ 0 for all i “ 1, . . . , l, and the claim follows.

ðq If Λ1, . . . ,Λhl
are linearly independent vectors of CXpdq and

řl
i“1 biphi ` Iq “ I for

some bi P K, then
řl

i“1 bihi P I. Therefore

l
ÿ

i“1

biΛhi
“ Λřl

i“1 bihi
“ 0⃗.

Then bi “ 0 for all i “ 1, . . . , l, and the implication follows.

Remark 1. Lemma 1 proves that tΛg1 , . . . ,Λgk1
u is a basis of CXpd, k1, Gq when k1 ě 1.

Therefore, dimK CXpd, k1, Gq “ k1 for all k1 ě 0.

Lemma 2. If D is a subspace of CXpdq with dimK D “ r, d ě 1, 1 ď r ď HIpdq ´ k1,
and tΛf1 , . . . ,Λfru is a basis of D, then D XCXpd, k1, Gq “ t⃗0u if and only if tf1, . . . , fru P

Ud,r,k1,G.

Proof. If k1 “ 0 the claim follows immediately. Let k1 ě 1.
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ñ) Suppose that DXCXpd, k1, Gq “ t⃗0u. If tf1, . . . , fru R Ud,r,k1,G then tf1, . . . , fruYG
is linearly dependent modulo I. Thus there are a1, . . . , ar, b1, . . . , bk1 P K, not all of them
equal to zero, such that

r
ÿ

i“1

aifi `

k1
ÿ

i“1

bigi P I.

Let f “
řr

i“1 aifi, g “
řk1

i“1 bigi. Thus Λf`g “ 0⃗ “ Λf ` Λg. Hence Λf “ ´Λg.

Therefore Λf P D XCXpd, k1, Gq. If Λf “ 0⃗ then f P I, g P I and ai “ 0 for all i “ 1, . . . , r,

bi “ 0 for all i “ 1, . . . , k1, a contradiction. Then Λf ‰ 0⃗ and this contradicts that

D X CXpd, k1, Gq “ t⃗0u

ð) Suppose that tf1, . . . , fru P Ud,r,k1,G. Then tf1, . . . , fru Y G is linearly independent
modulo I. If Λg P D X CXpd, k1, Gq then

Λg “

r
ÿ

i“1

aiΛfi “

k1
ÿ

i“1

biΛgi “ Λřr
i“1 aifi “ Λřk1

i“1 bigi

for some ai, bi P K. Hence
řr

i“1 aifi´
řk1

i“1 bigi P I. Therefore
řr

i“1 aipfi`Iq´
řk1

i“1 bipgi`
Iq “ I. But f1 ` I, . . . , fr ` I, g1 ` I, . . . , gk1

` I are linearly independent over K. Thus
ai “ 0 for all i “ 1, . . . , r, and bi “ 0 for all i “ 1, . . . , k1. Then Λg “ 0⃗, and the claim
follows.

In the next Lemma we use the following notation: if F “ tf1, . . . , fru Ď Sd, then the
set of zeros of F in X is given by

VXpF q “ trP s P X : fipP q “ 0 for all i “ 1, . . . , ru.

Lemma 3. If X Ă Ps´1, d ě 1, 1 ď r ď HIpdq ´ k1, G P Wd,k1
, then

MrpCXpdq, CXpd, k1, Gqq “ mint|XzVXpF q| : F “ tf1, . . . , fru P Ud,r,k1,Gu.

Proof. If D is a subspace of CXpdq with dimK D “ r, and tΛf1 , . . . ,Λfru is a K–basis of D
with F “ tf1, . . . , fru Ď Sd, then, by [16, Lemma 4.3], we know that

|supp pDq| “ |X ´ VXpF q|. (3.1)

The claim follows at once from (3.1), Lemma 2, and the definition of the rth relative
generalized Hamming weight MrpCXpdq, CXpd, k1, Gqq.

The following theorem gives an algebraic approach to the relative generalized Hamming
weights of the Reed–Muller–type codes.

Theorem 1. Let K be a finite field, X Ď Ps´1, and I “ IX its vanishing ideal. Let
G P Wd,k1

. Then
MrpCXpdq, CXpd, k1, Gqq “ δIpd, r, k1, Gq,

for all d ě 1, 0 ď k1 ď HIpdq, and 1 ď r ď HIpdq ´ k1.
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Proof. If k1 “ 0 then CXpd, k1, Gq “ t⃗0u and MrpCXpdq, CXpd, k1, Gqq “ δrpCXpdqq. Also
δIpd, r, k1, Gq is the generalized minimum distance δIpd, rq. Therefore the claim follows
from [16, Theorem 4.5]. Let k1 ě 1. If Fd,r,k1,G “ H then δIpd, r, k1, Gq “ degpS{Iq “ |X|.
Moreover if F “ tfiu

r
i“1 Ď Ud,r,k1,G then pI : pF qq “ I. By [16, Lemma 3.2] and Lemma 3

we obtain that MrpCXpdq, CXpd, k1, Gqq “ degpS{Iq “ |X|, and the equality follows. Assume
that Fd,r,k1,G ‰ H. Using Lemma 3, [16, Lemma 3.4] and the fact that degpS{Iq “ |X| we
obtain that

MrpCXpdq, CXpd, k1, Gqq “ mint|XzVXpF q| : F P Fd,r,k1,Gu

“ |X| ´ maxt|VXpF q| : F P Fd,r,k1,Gu

“ |X| ´ maxtdegpS{pI, F qq : F P Fd,r,k1,Gu

“ degpS{Iq ´ maxtdegpS{pI, F qq : F P Fd,r,k1,Gu

“ δIpd, r, k1, Gq,

and the result follows.

Definition 6. Let I be a graded ideal of S and G P Wd,k1
. The relative Vasconcelos function

of I is the function ϑI : N ˆ v1, k ´ k1w ˆ v0, kw ˆ Wd,k1 Ñ N given by

ϑIpd, r, k1, Gq “

"

mintdegpS{pI : pF qqq : F P Fd,r,k1,Gu if Fd,r,k1,G ‰ H,
degpS{Iq if Fd,r,k1,G “ H.

We notice that if k1 “ 0 then the relative Vasconcelos function is the Vasconcelos
function ϑIpd, rq, introduced in [16, Definition 4.4].

Theorem 2. Let K be a finite field, X Ď Ps´1, and I “ IX its vanishing ideal. Let
G P Wd,k1

. Then

MrpCXpdq, CXpd, k1, Gqq “ ϑIpd, r, k1, Gq,

for all d ě 1, 0 ď k1 ď HIpdq, and 1 ď r ď HIpdq ´ k1.

Proof. If k1 “ 0 then MrpCXpdq, CXpd, k1, Gqq “ δrpCXpdqq and the relative Vasconcelos
function is the Vasconcelos function ϑIpd, rq. The claim follows from [16, Theorem 4.5].
Let k1 ě 1. If Fd,r,k1,G “ H then

ϑIpd, r, k1, Gq “ degpS{Iq “ |X| “ MrpCXpdq, CXpd, k1, Gqq,

as was observed in the proof of Theorem 1. Assume Fd,r,k1,G ‰ H. Using Lemma 3 and
[16, Lemma 3.2] we get

MrpCXpdq, CXpd, k1, Gqq “ mint|XzVXpF q| : F P Fd,r,k1,Gu

“ mintdegpS{pI : pF qq : F P Fd,r,k1,Gu

“ ϑIpd, r, k1, Gq,

and the claim follows.
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Lemma 4. Let F “ tf1, . . . , fru Ď Sd be a set of standard polynomials such that the
leading monomials inăpf1q, . . . , inăpfrq are distinct. Therefore f1`I, . . . , fr `I are linearly
independent over K.

Proof. If h :“
řr

i“1 aifi P I for some ai P K, and aj ‰ 0 for some j “ 1, . . . , r, then h ‰ 0
and inăphq P ∆ăpIq, a contradiction. Thus ai “ 0 for all i “ 1, . . . , r and f1 ` I, . . . , fr ` I
are linearly independent over K.

Let Fă,d,r,k1,G be the set of all subsets F “ tf1, . . . , fru P Ud,r,k1,G such that pI : pF qq ‰

I, fi is a standard polynomial for all i “ 1, . . . , r, and

inăpf1q, . . . , inăpfrq, inăpg1q, . . . , inăpgk1q

are distinct monomials. The following theorem allows us to work just with the standard
polynomials instead of all the polynomials to study the RGMDF of I.

Theorem 3. Let d P N, r P v1, k ´ k1w, k1 P v0, kw, and G P Wd,k1 . The RGMDF of I is
given by

δIpd, r, k1, Gq “
"

degpS{Iq ´ maxtdegpS{pI, F qq : F P Fă,d,r,k1,Gu if Fă,d,r,k1,G ‰ H,
degpS{Iq if Fă,d,r,k1,G “ H.

Proof. If k1 “ 0 the result follows from [16, Proposition 4.8]. We assume k1 ě 1. Take F “

tf1, . . . , fru P Fd,r,k1,G. By the proof of [16, Proposition 4.8], fi “ pi ` hi with pi P Id and
hi is a K–linear combination of standard monomials of degree d. Setting H “ th1, . . . , hru,
we observe that pI : pF qq “ pI, pHqq, pI, F q “ pI,Hq, and fi`I “ hi`I for i “ 1, . . . , r. We
need to show that H P Ud,r,k1,G. If H R Ud,r,k1,G then H Y G is linearly dependent modulo
I. But then F Y G is linearly dependent modulo I, a contradiction because F P Fd,r,k1,G.
Hence, H P Ud,r,k1,G. Therefore we may replace F by H, and, with this assumption, as in
the same proof of [16, Proposition 4.8], there is a set G1 “ tG1, . . . ,Gru of homogeneous
standard polynomials of degree d such that xF y “ xG1y, inăpG1q, . . . , inăpGrq are distinct
monomials and inăpfiq ľ inăpGiq for all i. Analogously, we can assume that

inăph1q, . . . , inăphrq, inăpg1q, . . . , inăpgk1
q

are distinct monomials. It remains to prove that G1 P Ud,r,k1,G. On the contrary, if
G1 R Ud,r,k1,G then G1 Y G is linearly dependent modulo I. Thus

r
ÿ

i“1

aiGi `

k1
ÿ

i“1

bigi P I

for some ai, bi P K, and at least one of the ai ‰ 0 and one of the bi ‰ 0. But, as xF y “ xG1y,

r
ÿ

i“1

aiGi “

r
ÿ

i“1

cifi

for some ci P K, not all of them equal to zero. Therefore F Y G is linearly dependent
modulo I, a contradiction. Hence G1 P Ud,r,k1,G, and the claim follows.
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Remark 2. Although Theorem 3 gives an interesting algebraic equivalence for the RGMDF
of I, it is hard to compute this number because as HIpdq “ |∆ăpIq X Sd|, the number of

subsets of r standard polynomials in Ud,r,k1,G is at most
`

qHI pdq´1
r

˘

, and then we need to
test which of them are in Fă,d,r,k1,G and compute the corresponding degrees.

Theorem 4. Let K be a finite field, X Ď Ps´1, I “ IX its vanishing ideal, and G P Wd,k1 .
Then

MrpCXpdq, CXpd, k1, Gqq ě fpIpd, r, k1, Gq,

for all d ě 1, 0 ď k1 ď HIpdq, and 1 ď r ď HIpdq ´ k1.

Proof. If k1 “ 0 then MrpCXpdq, CXpd, k1, Gqq “ δrpCXpdqq and fpIpd, r, k1, Gq is equal to
the footprint function fpIpd, rq. The claim follows from [16, Theorem 4.9]. Let k1 ě 1. If
Fă,d,r,k1,G “ H then δIpd, r, k1, Gq “ degpS{Iq, and by definition

fpIpd, r, k1, Gq ď degpS{Iq “ δIpd, r, k1, Gq “ MrpCXpdq, CXpd, k1, Gqq.

Assume Fă,d,r,k1,G ‰ H, and let F P Fă,d,r,k1,G. Thus pI : pF qq ‰ I and by [16, Lemma
4.7], pinăpIq : pinăpF qqq ‰ inăpIq, where inăpF q “ tinăpf1q, . . . , inăpfrqu. Therefore
inăpF q P µă,d,r,k1,G, and, by [16, Lemma 4.1],

degpS{pI, F qq ď degpS{pinăpIq, inăpF qqq

ďmaxtdegpS{pinăpIq,Mqq : M P µă,d,r,k1,Gu.

Thus

maxtdegpS{pI, F qq : F P Fd,r,k1,Gu ď

maxtdegpS{pinăpIq,Mqq : M P µă,d,r,k1,Gu,

and then

degpS{Iq ´ maxtdegpS{pI, F qq : F P Fd,r,k1,Gu ě

degpS{Iq ´ maxtdegpS{pinăpIq,Mqq : M P µă,d,r,k1,Gu.

Hence δIpd, r, k1, Gq ě fpIpd, r, k1, Gq, and by Theorem 1,

MrpCXpdq, CXpd, k1, Gqq ě fpIpd, r, k1, Gq.

Remark 3. fpIpd, r, k1, Gq is easier to compute than δIpd, r, k1, Gq (and therefore than

MrpCXpdq, CXpd, k1, Gqq) because we need to test which of the at most
`

HIpdq
r

˘

subsets of r

standard monomials are in µă,d,r,k1,G and compute the corresponding degrees. And
`

HIpdq
r

˘

is much lower than the value
`

qHI pdq´1
r

˘

, given in Remark 2.
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Table 1: The Hilbert function of S{I in Example 1

d 1 2 3 4 5 6

HIpdq 3 6 10 13 15 16

4 Examples

Example 1. Let K “ F5 be a finite field with 5 elements, S “ Krt1, t2, t3s be a polynomial
ring , and let X be a projective torus in P2, that is,

X “ T2 :“ trz1 : z2 : z3s P P2 : zi P Kzt0u, for i “ 1, 2, 3u.

It is well kown that its vanishing ideal is given by

I “ IX “ pt41 ´ t43, t
4
2 ´ t43q,

and that regpS{Iq “ 6, degpS{Iq “ 16 (see for example [30, Proposition 2.1]). Actually,
the Hilbert function is given in Table 1.

Consider the case k1 “ 0. Thus CXpd, k1, Gq “ t⃗0u and

MrpCXpdq, CXpd, k1, Gqq “ δrpCXpdqq.

Using Macaulay 2 [18] we obtain the 6 ˆ 16 matrix whose entry pi, jq is precisely
fpIpi, j, k1, Gq. That is, the number of the row is the value of d, and the number of the
column is the value of r, and the entries are the values of the generalized footprint function:

¨

˚

˚

˚

˚

˚

˚

˝

12 15 16 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

8 11 12 14 15 16 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

4 7 8 10 11 12 13 14 15 16 ´ ´ ´ ´ ´ ´

3 4 6 7 8 9 10 11 12 13 14 15 16 ´ ´ ´

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ´

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

˛

‹

‹

‹

‹

‹

‹

‚

Using [15, Theorem 18], [17, Corollary 2.3], [30, Theorem 3.5], and Macaulay 2, we
observe that the values of the generalized Hamming weights of CXpdq are exactly the same
that the entries of the last matrix. Therefore, for this particular example,

fpIpd, r, k1, Gq “ MrpCXpdq, CXpd, r, k1qq “ δrpCXpdqq,

for k1 “ 0, d P v1, 6w, r P v1,HIpdqw. Hence, the lower bound given in Theorem 4 is
attained.

Example 2. Let K “ F3 be a finite field with 3 elements, S “ Krt1, t2, t3, t4s be a polyno-
mial ring with 4 variables, and let X be a projective torus in P3. Thus

X “ T3 :“ trz1 : z2 : z3 : z4s P P3 : zi P K˚ for all iu,

where K˚ “ Kzt0u. The vanishing ideal of this set is given by

I “ IX “ pt21 ´ t24, t
2
2 ´ t24, t

2
3 ´ t24q,
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and reg pS{Iq “ 3, degpS{Iq “ 8. Assume d “ 1, k1 “ 1, G “ tt1u. As HIp1q “ 4 then
1 ď r ď HIp1q ´ k1 “ 3. We notice that

CXp1, 1, tt1uq “ tp0, 0, 0, 0, 0, 0, 0, 0q, p1, 1, 1, 1, 1, 1, 1, 1q, p2, 2, 2, 2, 2, 2, 2, 2qu.

Case I: r “ 1. By [30, Theorem 3.5] we obtain that δ1pCXp1qq “ 4. Also, using the
generalized Plotkin bound [34, Proposition 4] we get

4 “ δ1pCXp1qq ď M1pCXp1q, CXp1, 1, tt1uqq ď

Z

1 ´ 3´1

1 ´ 3´3
¨ p7q

^

“ 4.

Therefore, in this case,

δ1pCXp1qq “ M1pCXp1q, CXp1, 1, tt1uqq “ 4.

Furthermore, using Definition 3 and Macaulay 2 we obtain that

fpIp1, 1, 1, tt1uq “ 4.

Case II: r “ 2. By [15, Theorem 18] we obtain that δ2pCXp1qq “ 6. Moreover, if we
use the generalized Singleton bound [34, Proposition 3], we get that

6 “ δ2pCXp1qq ď M2pCXp1q, CXp1, 1, tt1uqq ď |X| ´ HIp1q ` 2 “ 8 ´ 4 ` 2 “ 6.

Hence

δ2pCXp1qq “ M2pCXp1q, CXp1, 1, tt1uqq “ 6.

In the same way, using Definition 3 and Macaulay 2, we obtain that

fpIp1, 2, 1, tt1uq “ 6.

Case III: r “ 3. By [17, Corollary 2.3] we obtain that δ3pCXp1qq “ 7. Also, by the
generalized Singleton bound,

7 “ δ3pCXp1qq ď M3pCXp1q, CXp1, 1, tt1uqq ď |X| ´ HIp1q ` 2 “ 8 ´ 4 ` 3 “ 7.

Hence

δ3pCXp1qq “ M3pCXp1q, CXp1, 1, tt1uqq “ 7.

Using Definition 3 and Macaulay 2, we obtain that

fpIp1, 3, 1, tt1uq “ 7.

Therefore, in the three cases above, the lower bound of Theorem 4 is attained.

Acknowledgement. The authors thank professor R. H. Villarreal because he provided
some procedures in Macaulay 2.
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[12] M. González Sarabia, C. Renteŕıa Márquez, E. Sarmiento Rosales, Pro-
jective parameterized linear codes, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 23
(2), 223–240 (2015).
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