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Abstract

Let M be a module over a commutative ring and let Spec(M) be the collection
of all prime submodules of M . One can define a Zariski topology on Spec(M), which
is analogous to that on Spec(R), and then for any non-empty set T of Spec(M), it
is possible to define a simple graph G(τT ), called the Zariski topology-graph. In this
paper, we study the domination number of G(τT ) and some connections between the
graph-theoretic properties of G(τT ) and algebraic properties of the module M .
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1 Introduction

Throughout this paper R is a commutative ring with a non-zero identity and M is a unital
R-module. By N ≤ M (resp. N < M) we mean that N is a submodule (resp. proper
submodule) of M .

Define (N :R K) or simply (N : K) = {r ∈ R| rK ⊆ N} for any N,K ≤M . We denote
((0) :M) by AnnR(M) or simply Ann(M). M is said to be faithful if Ann(M) = (0). Let
N,K ≤ M . Then the product of N and K, denoted by NK, is defined by (N : M)(K :
M)M (see [3]). Define ann(N) or simply annN = {m ∈M | m(N :M) = 0}.

The prime spectrum of M is the set of all prime submodules of M and denoted by
Spec(M), Max(M) is the set of all maximal submodules of M , and J(M), the jacobson
radical of M , is the intersection of all elements of Max(M), respectively [15].

If N is a submodule of M , then V (N) = {P ∈ Spec(M)| (P :M) ⊇ (N :M)} [16].
The Zariski topology on X = Spec(M) is the topology τM described by taking the set

Z(M) = {V (N)| N is a submodule of M} as the set of closed sets of Spec(M) [16].
There are many papers on assigning graphs to rings or modules (see, for example,

[1, 4, 6, 7, 10, 11, 18, 20]). In [4], the present authors introduced and studied the graph
G(τT ) and AG(M), called the Zariski topology-graph and the annihilating-submodule graph,
respectively.

Let T be a non-empty subset of Spec(M). The Zariski topology-graph G(τT ) is an
undirected graph with vertices V (G(τT ))= {N < M | there exists K < M such that V (N)∪
V (K) = T and V (N), V (K) ̸= T} and distinct vertices N and L are adjacent if and only if
V (N) ∪ V (L) = T (see [4, Definition 2.3]).

AG(M) is an undirected graph with vertices V (AG(M))= {N ≤M | there exists (0) ̸=
K < M with NK = (0)}. In this graph, distinct vertices N,L ∈ V (AG(M)) are adjacent if
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and only if NL = (0). Let AG(M)∗ be the subgraph of AG(M) with vertices V (AG(M)∗) =
{N < M with (N : M) ̸= Ann(M)| there exists a submodule K < M with (K : M) ̸=
Ann(M) and NK = (0)}. By [4, Theorem 3.4], one concludes that AG(M)∗ is a connected
subgraph.

If Spec(M) ̸= ∅, the mapping ψ : Spec(M) → Spec(R/Ann(M)) such that ψ(P ) = (P :
M)/Ann(M) for every P ∈ Spec(M), is called the natural map of Spec(M) [16].

The prime radical
√
N is defined to be the intersection of all prime submodules of M

containing N , and in case N is not contained in any prime submodule,
√
N is defined to

be M [15].

In this paper, we study the domination number of G(τT ) and some connections between
the graph-theoretic properties of G(τT ) and algebraic properties of the module M .

Z(R) and Nil(R) will denote the set of all zero-divisors and the set of all nilpotent
elements of R, respectively. Also, ZR(M) or simply Z(M), the set of zero divisors on M ,
is the set {r ∈ R| rm = 0 for some 0 ̸= m ∈ M}. If Z(M) = 0, then we say that M is a
domain. An ideal I ≤ R is said to be nil if I consists of nilpotent elements.

Now we introduce some notions. A graph G is an ordered triple (V (G), E(G), ψG)
consisting of a nonempty set of vertices, V (G), a set E(G) of edges, and an incident function
ψG that associates an unordered pair of distinct vertices with each edge. The edge e joins
x and y if ψG(e) = {x, y}, and we say x and y are adjacent. The number of edges incident
at x in G is called the degree of the vertex x in G and is denoted by dG(x) or simply d(x).
A path in graph G is a finite sequence of vertices {x0, x1, . . . , xn}, where xi−1 and xi are
adjacent for each 1 ≤ i ≤ n and we denote xi−1 − xi for existing an edge between xi−1 and
xi. The distance between two vertices x and y, denoted d(x, y), is the length of the shortest
path from x to y. The diameter of a connected graph G is the maximum distance between
two distinct vertices of G. For any vertex x of a connected graph G, the eccentricity of x,
denoted e(x), is the maximum of the distances from x to the other vertices of G. The set of
vertices with minimum eccentricity is called the center of the graph G, and this minimum
eccentricity value is the radius of G. For some U ⊆ V (G), we denote by N(U), the set of
all vertices of G \ U adjacent to at least one vertex of U and N [U ] = N(U) ∪ {U}.

A graphH is a subgraph of G, if V (H) ⊆ V (G), E(H) ⊆ E(G), and ψH is the restriction
of ψG to E(H). A subgraph H of G is a spanning subgraph of G if V (H) = V (G). A
spanning subgraph H of G is called a perfect matching of G if every vertex of G has degree
1. A subset S of the vertex set V (G) is called independent if any two vertices of S are not
adjacent in G.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques
in G, denoted by cl(G), is called the clique number of G. Let χ(G) denote the chromatic
number of the graph G, that is, the minimal number of colors needed to color the vertices
of G so that no two adjacent vertices have the same color. Obviously χ(G) ≥ cl(G).

A graph G is a split graph if V (G) can be partitioned into two subsets A and B such
that the subgraph induced by A in G is a clique in G, and B is an independent subset of
V (G).

A subset D of V (G) is called a dominating set if every vertex of G is either in D or
adjacent to at least one vertex in D. The domination number of G, denoted by γ(G), is
the number of vertices in a smallest dominating set of G. A total dominating set of a
graph G is a dominating set S such that every vertex is adjacent to a vertex in S. The
total domination number of G, denoted by γt(G), is the minimum cardinality of a total
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dominating set. A dominating set of cardinality γ(G) (γt(G)) is called a γ-set (γt-set). A
dominating set D is a connected dominating set if the subgraph < D > induced by D is
a connected subgraph of G. The connected domination number of G, denoted by γc(G),
is the minimum cardinality of a connected dominating set of G. A dominating set D is a
clique dominating set if the subgraph < D > induced by D is complete in G. The clique
domination number γcl(G) of G equals the minimum cardinality of a clique dominating set
of G. A dominating set D is a paired-dominating set if the subgraph < D > induced by D
has a perfect matching. The paired-domination number γpr(G) of G equals the minimum
cardinality of a paired-dominating set of G.

A vertex u is a neighbor of v in G, if uv is an edge of G, and u ̸= v. The set of all
neighbors of v is the open neighborhood of v or the neighbor set of v, and is denoted by
N(v); the set N [v] = N(v) ∪ {v} is the closed neighborhood of v in G.

Let S be a dominating set of a graph G, and u ∈ S. The private neighborhood of u
relative to S in G is the set of vertices which are in the closed neighborhood of u, but not in
the closed neighborhood of any vertex in S\{u}. Thus the private neighborhood PN (u, S) of
u with respect to S is given by PN (u, S) = N [u]\ (∪v∈S\{u}N [v]). A set S ⊆ V (G) is called
irredundant if every vertex v of S has at least one private neighbor. An irredundant set S is
a maximal irredundant set if for every vertex u ∈ V \S, the set S ∪{u} is not irredundant.
The irredundance number ir(G) is the minimum cardinality of maximal irredundant sets.
There are so many domination parameters in the literature and for more details we refer to
[13].

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and
V such that every edge connects a vertex in U to one in V ; that is, U and V are each
independent sets and is denoted by Bn,m, where V and U are of size n and m, respectively.
A complete bipartite graph on n and m vertices, denoted by Kn,m, where V and U are
of size n and m, respectively, and E(G) connects every vertex in V with all vertices in U .
Note that a graph K1,m is called a star graph and the vertex in the singleton partition is
called the center of the graph. We denote by Cn and Pn a cycle and a path of order n,
respectively (see [12]).

In section 2, a dominating set of G(τT ) is constructed using elements of the center
when M is an Artinian module. Also we prove that the domination number of G(τT ) is
equal to the number of factors in the Artinian decomposition of M and we also find several
domination parameters of G(τT ). In section 3, some relations between the domination
numbers and the total domination numbers of Zariski topology-graphs are studied. Also,
we study the domination number of the Zariski topology-graphs for reduced rings with
finitely many minimal primes and faithful modules.

Throughout the rest of this paper, we denote by T a non-empty subset of Spec(M),
F := ∩P∈TP , Q := (F :M)M , M̄ :=M/Q, N̄ := N/Q, m̄ := m+Q, and Ī := I/(Q :M),
where N is a submodule of M containing Q, m ∈ M , and I is an ideal of R containing
(Q : M). Also, throughout this paper M̄ is a module which does not have a
non-zero submodule F̄ ̸= N̄ with V (N) = T .

The following results are useful for further reference in this paper.

Remark 1. Let N be a submodule of M . Set V ∗(N) := {P ∈ Spec(M)| P ⊇ N}. By [4,
Remark 2.2], for submodules N and K of M , we have

V (N) ∪ V (K) = V (N ∩K) = V (NK) = V ∗(NK).
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By [4, Remark 2.5], we have T is a closed subset of Spec(M) if and only if T = V (F ) and
G(τT ) ̸= ∅ if and only if T = V (F ) and T is not irreducible. So if N and K are adjacent
in G(τT ), then V

∗(NK) = V ∗(Q) and hence
√
NK = F . Therefore F ⊆

√
(N :M)M and

F ⊆
√

(K :M)M .

The following is well known.

Proposition 1. Suppose that e is an idempotent element of R. We have the following
statements.

(a) R = R1 ×R2, where R1 = eR and R2 = (1− e)R.

(b) M =M1 ×M2, where M1 = eM and M2 = (1− e)M .

(c) For every submodule N of M , N = N1 × N2 such that N1 is an R1-submodule M1,
N2 is an R2-submodule M2, and (N :R M) = (N1 :R1

M1)× (N2 :R2
M2).

(d) For submodules N and K of M , NK = N1K1 ×N2K2 such that N = N1 ×N2 and
K = K1 ×K2.

(e) Prime submodules ofM are P×M2 andM1×Q, where P and Q are prime submodules
of M1 and M2, respectively.

We need the following results.

Lemma 1. (See [2, Proposition 7.6].) Let R1, R2, . . . , Rn be non-zero ideals of R. Then
the following statements are equivalent:

(a) R = R1 × . . .×Rn;

(b) As an abelian group R is the direct sum of R1, . . . , Rn;

(c) There exist pairwise orthogonal idempotents e1, . . . , en with 1 = e1 + . . . + en, and
Ri = Rei, i = 1, . . . , n.

Lemma 2. (See [14, Theorem 21.28].) Let I be a nil ideal in R and u ∈ R be such that
u+I is an idempotent in R/I. Then there exists an idempotent e in uR such that e−u ∈ I.

Lemma 3. (See [7, Lemma 2.4].) Let N be a minimal submodule of M and let Ann(M)
be a nil ideal. Then we have N2 = (0) or N = eM for some idempotent e ∈ R.

Lemma 4. (See [4, Lemma 4.10].) Let R be an Artinian ring and suppose M̄ is a finitely
generated module which is not a vertex in AG(M̄). Then for every non-zero proper sub-
module N̄ of M̄ , N̄ and N are vertices in AG(M̄) and G(τT ), respectively.

Theorem 1. (See [5, Theorem 4.2].) Assume that M̄ is a faithful module. Then the
following statements are equivalent.

(a) χ(G(τSpec(M))) = 2.

(b) G(τSpec(M)) is a bipartite graph with two non-empty parts.
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(c) G(τSpec(M)) is a complete bipartite graph with two non-empty parts.

(d) Either R is a reduced ring with exactly two minimal prime ideals or G(τSpec(M)) is a
star graph with more than one vertex.

Proposition 2. (See [13, Proposition 3.9].) Every minimal dominating set in a graph G
is a maximal irredundant set of G.

2 Domination number in Zariski topology-graph for Ar-
tinian modules

The main goal in this section, is to obtain the value certain domination parameters of the
Zariski topology-graph for Artinian modules.

Lemma 5. Let M̄ be a faithful module. Then the following statements are equivalent.

(a) There is a vertex of G(τSpec(M)) which is adjacent to every other vertex of G(τSpec(M)).

(b) G(τSpec(M)) is a star graph.

(c) M = F ⊕D, where F is a simple module and D is a prime module.

(d) γ(G(τT )) = 1.

Proof. Trivial from [5, Corollary 3.2].

Theorem 2. Let M̄ be a finitely generated Artinian local module and G(τT ) ̸= ∅. Assume
that N̄ is the unique maximal submodule of M̄ . Then the radius of G(τT ) is 0 or 1 and the
center of G(τT ) is {K| K̄ ⊆ ann(N̄), 0̄ ̸= K̄ ≤ M̄}.

Proof. Suppose that G(τT ) ̸= ∅. Then the number of non-zero proper submodules of M̄
is greater than 1. Since M̄ is finitely generated Artinian module, there exists m ∈ N,
m > 1 such that N̄m = (0̄) and N̄m−1 ̸= (0̄). For any non-zero submodule K̄ of M̄ ,
K̄N̄m−1 ⊆ N̄N̄m−1 = (0̄) and so d(Nm−1,K) = 1. Hence e(Nm−1) = 1 and so the radius
of G(τT ) is 1. Suppose K̄ and L̄ are arbitrary non-zero submodules of M̄ and K̄ ⊆ ann(N̄).
Then K̄L̄ ⊆ K̄N̄ = (0̄) and hence e(K) = 1. Suppose (0̄) ̸= K̄ ′ * ann(N̄). Then
K̄ ′N̄ ̸= (0̄) and so e(K ′) > 1. Hence the center of G(τT ) is {K| K̄ ⊆ ann(N̄), 0 ̸= K̄ ≤ M̄}.

Corollary 1. Let M̄ be a finitely generated Artinian local module and N̄ is the unique
maximal submodule of M̄ . Then the following hold good.

(a) γ(G(τT )) = 1.

(b) D is a γ-set of G(τT ) if and only if D̄ ⊆ ann(N̄).
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Proof. (a) It follows directly from Theorem 2.
(b) Let D = {K} be a γ-set of G(τT ). Suppose K̄ * ann(N̄). Then K̄N̄ ̸= (0̄) and so N
is not dominated by K, a contradiction. Conversely, suppose D̄ ⊆ ann(N̄). Let K be an
arbitrary vertex in G(τT ). Then K̄L̄ ⊆ N̄L̄ = (0̄) for every L̄ ∈ D, i.e., every vertex K is
adjacent to every L ∈ D. If |D| > 1, then D \ {L′} is also a dominating set of G(τT ) for
some L′ ∈ D and so D is not minimal. Thus |D| = 1 and so D is a γ-set by (a).

Theorem 3. Let M̄ = ⊕n
i=1M̄i, where M̄i is a finitely generated Artinian local module

for all 1 ≤ i ≤ n and n ≥ 2. Then the radius of G(τT ) is 2 and the center of G(τT ) is
{K|K̄ ⊆ J(M̄), 0̄ ̸= K̄ ≤ M̄}.

Proof. Assume that M̄ = ⊕n
i=1M̄i, where M̄i is a finitely generated Artinian local module for

all 1 ≤ i ≤ n and n ≥ 2. Let J̄i be the unique maximal submodule in M̄i with nilpotency ni.
Note thatMax(M̄) = {N̄1, . . . , N̄n| N̄i = M̄1⊕. . .⊕ ¯Mi−1⊕J̄i⊕ ¯Mi+1⊕. . .⊕M̄n, 1 ≤ i ≤ n} is
the set of all maximal submodules in M̄ . Consider D̄i = (0̄)⊕. . .⊕(0̄)⊕J̄i

ni−1⊕(0̄)⊕. . .⊕(0̄)
for 1 ≤ i ≤ n. Note that J(M̄) = J̄1 ⊕ . . .⊕ J̄n is the Jacobson radical of M̄ and any non-
zero submodule in M̄ is adjacent to D̄i for some i. Let K̄ be any non-zero submodule of
M̄ . Then K̄ = ⊕n

i=1K̄i, where K̄i is a submodule of M̄i.
Case 1. If K̄ = N̄i for some i, then K̄D̄j ̸= (0̄) and K̄N̄j ̸= (0̄) for all j ̸= i. Note that
N(K) = {(0) ⊕ . . . ⊕ (0) ⊕ Li ⊕ (0) ⊕ . . . ⊕ (0)| J̄iL̄i = (0̄), L̄i is a nonzero submodule in
M̄i}. Clearly N(K)∩N(Nj) = (0), d(K,Nj) ̸= 2 for all j ̸= i, and so K −Di −Dj −Nj is
a path in G(τT ). Therefore e(K) = 3 and so e(N) = 3 for all N̄ ∈Max(M̄).
Case 2. If K̄ ̸= D̄i and K̄i ⊆ J̄i for all i. Then K̄D̄i = (0̄) for all i. Let L̄ be any non-zero
submodule of M̄ with K̄L̄ ̸= (0̄). Then L̄D̄j = (0̄) for some j, K − Dj − L is a path in
G(τT ) and so e(K) = 2.
Case 3. If K̄i = M̄i for some i, then K̄D̄i ̸= (0̄), K̄N̄i ≠ (0̄) and K̄D̄j = (0̄) for some
j ̸= i. Thus K − Dj − Di − Ni is a path in G(τT ), d(K,Ni) = 3 and so e(K) = 3.
Thus e(K) = 2 for all K̄ ⊆ J(M̄). Further note that in all the cases center of G(τT ) is
{K|K̄ ⊆ J(M̄), 0̄ ̸= K̄ ≤ M̄}.

Corollary 2. Let M̄ = ⊕n
i=1M̄i, where M̄i is a simple module for all 1 ≤ i ≤ n and

n ≥ 2. Then the radius of G(τT ) is 1 or 2 and the center of G(τT ) is ∪n
i=1Di, where

D̄i = (0̄)⊕ . . .⊕ (0̄)⊕ M̄i ⊕ (0̄)⊕ . . .⊕ (0̄) for 1 ≤ i ≤ n.

Proposition 3. Let M̄ = ⊕n
i=1M̄i, where M̄i is a finitely generated Artinian local module

for all 1 ≤ i ≤ n and n ≥ 2 (M̄ ̸= M̄1 ⊕ M̄2, where M̄1 and M̄2 are simple modules). Then

(a) γ(G(τT )) = n.

(b) ir(G(τT )) = n.

(c) γc(G(τT )) = n.

(d) γt(G(τT )) = n.

(e) γcl(G(τT )) = n.

(f) γpr(G(τT )) = n, if n is even and γpr(G(τT )) = n+ 1, if n is odd.
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Proof. Let J̄i be the unique maximal submodule in M̄i with nilpotency ni. Let Ω =

{D1, D2, . . . , Dn}, where D̄i = (0̄)⊕. . .⊕(0̄)⊕J̄i
ni−1⊕(0̄)⊕. . .⊕(0̄) for 1 ≤ i ≤ n. Note that

any non-zero submodule in M̄ is adjacent to Di for some i. Therefore N [Ω] = V (G(τT )),
Ω is a dominating set of G(τT ) and so γ(G(τT )) ≤ n. Suppose S is a dominating set of
G(τT ) with |S| < n. Then there exists N̄ ∈ Max(M̄) such that N̄K̄ ̸= (0̄) for all K ∈ S,
a contradiction. Hence γ(G(τT )) = n. By Proposition 2, Ω is a maximal irredundant set
with minimum cardinality and so ir(G(τT )) = n. Clearly < Ω > is a complete subgraph of
G(τT ). Hence γc(G(τT )) = γt(G(τT )) = γcl(G(τT )) = n. If n is even, then < Ω > has a
perfect matching and so Ω is a paired-dominating set of G(τT ). Thus γpr(G(τT )) = n. If n
is odd, then < Ω∪K > has a perfect matching for some K ∈ V (G(τT ))\Ω. and so Ω∪K is
a paired-dominating set of G(τT ). Thus γpr(G(τT )) = n if n even and γpr(G(τT )) = n+ 1
if n is odd.

Note that when M̄ = ⊕n
i=1M̄i, where M̄i is a finitely generated Artinian local module

for all 1 ≤ i ≤ n and n ≥ 2. Then by Theorem 3, radius of G(τT ) is 2. Further, by
Proposition 3, the domination number of G(τT ) is equal to n, where n is the number of
distinct maximal submodules of M̄ . However, this need not be true if the radius of G(τT )
is 1. For, consider M̄ = M̄1 ⊕ M̄2, where M̄1 and M̄2 are simple modules. Then G(τT ) is
a star graph and so has radius 1, whereas M̄ has two distinct maximal submodules. The
following corollary shows that a more precise relationship between the domination number
of G(τT ) and the number of maximal submodules in M̄ , when M̄ is finite.

Corollary 3. Let M̄ be a finitely generated Artinian module, M̄ is a faithful module, and
γ(G(τT )) = n. Then either M̄ = M̄1 ⊕ M̄2, where M̄1 and M̄2 are simple modules or M̄
has n maximal submodules.

Proof. When γ(G(τT )) = 1, proof follows from [7, Corollary 2.12]. If γ(G(τT )) = n, where
n ≥ 2, then M̄ can not be M̄ = M̄1 ⊕ M̄2, where M̄1 and M̄2 are simple modules. Hence
M̄ = ⊕n

i=1M̄i, where M̄i is a finitely generated Artinian local module for all 1 ≤ i ≤ m and
m ≥ 2. By Proposition 3, γ(G(τT )) = m. Hence by assumption m = n, i.e., M̄ = ⊕n

i=1M̄i,
where M̄i is a finitely generated Artinian local module for all 1 ≤ i ≤ n and n ≥ 2. One
can see now that M̄ has n maximal submodules.

Theorem 4. Let M̄ be a faithful module and let S be the set of all maximal elements of
the set V (G(τSpec(M))). If |S| > 1, then γt(G(τSpec(M))) = |S|.

Proof. Suppose that S is the set of all maximal elements of the set V (G(τSpec(M))). LetK ∈
S. First we show that K = ann(annK) and there exists m ∈M such that K = ann(Rm).
Since annK ̸= 0, there exists 0 ̸= m ∈ annK. Hence K ⊆ ann(annK) ⊆ ann(Rm).
Thus by the maximality of K, we have K = ann(annK) = ann(Rm). For any K ∈ S,
choose mK ∈ M such that K = ann(RmK). We assert that D = {RmK | K ∈ S} is
a total dominating set of G(τSpec(M)). Since for every L ∈ V (G(τSpec(M))) there exists
K ∈ S such that L ⊆ K = ann(RmK), L and RmK are adjacent. Also for each pair
K,K ′ ∈ S, we have (RmK)(RmK′) = 0. Namely, if there exists m ∈ (RmK)(RmK′) \ {0},
then K = K ′ = ann(Rm). Thus γt(G(τSpec(M))) ≤ |S|. To complete the proof, we show
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that each element of an arbitrary γt-set of G(τSpec(M)) is adjacent to exactly one element
of S. Assume to the contrary, that a vertex L′ of a γt-set of G(τSpec(M)) is adjacent
to K and K ′, for K,K ′ ∈ S. Thus K = K ′ = annL′, which is impossible. Therefore
γt(G(τSpec(M))) = |S|.

Corollary 4. Let M̄ = ⊕n
i=1M̄i, where M̄i is a finitely generated Artinian local module

for all 1 ≤ i ≤ n, n ≥ 2 (M̄ ̸= M̄1 ⊕ M̄2, where M̄1 and M̄2 are simple modules). Then
γt(G(τT )) = γ(G(τT )) = |Max(M̄)|.
Proof. Let M̄ = ⊕n

i=1M̄i, where (M̄i, J̄i) is a finitely generated Artinian local module for
all 1 ≤ i ≤ n and n ≥ 2. Recall that Max(M̄) = {N̄1, . . . , N̄n| N̄i = M̄1 ⊕ . . . ⊕ ¯Mi−1 ⊕
J̄i ⊕ ¯Mi+1 ⊕ . . . ⊕ M̄n, 1 ≤ i ≤ n}. By Lemma 4, every nonzero proper submodule of M
which is contain F , is a vertex in G(τT ). So the set of maximal elements of V (G(τT )) and
Max(M̄) are equal and hence by Theorem 4, γt(G(τT )) = |Max(M̄)|. Finally, the result
follows from Proposition 3.

Example 1. Let Z3 × Z4 as Z24-module and T = Spec(M). S = {(0) × Z4,Z3 × 2̄Z4} is
the set of all maximal elements of G(τT ) and γt(G(τT )) = γt(P4) = 2 = |S|.

3 The relationship between γt(G(τT )) and γ(G(τT ))

The main goal in this section is to study the relation between γt(G(τT )) and γ(G(τT )).
The first result of this section provides the domination number of the Zariski topology-

graph of a finite direct product of modules.

Theorem 5. For a module M , which is a product of two (nonzero) modules, one of the
following holds.

(a) If M ∼= F×D, where F is a simple module and D is a prime module, then γ(G(τT )) =
1.

(b) If M ∼= D1 × D2, where D1 and D2 are prime modules which are not simple, then
γ(G(τT )) = 2.

(c) If M ∼=M1 ×D, where M1 is a module which is not prime and D is a prime module,
then γ(G(τT )) = γ(G(τT1)) + 1.

(d) If M ∼= M1 × M2, where M1 and M2 are two modules which are not prime, then
γ(G(τT )) = γ(G(τT1

)) + γ(G(τT2
)).

Proof. Parts (a) and (b) are trivial.
(c) Without loss of generality, one can assume that γ(G(τT1

)) < ∞. Suppose that
γ(G(τT1)) = n and {K1, . . . ,Kn} is a minimal dominating set of G(τT1). It is not hard to
see that {K1 × F2, . . . ,Kn × F2, F1 ×D} is the smallest dominating set of G(τT ).

(d) We may assume that γ(G(τT1
)) = m and γ(G(τT2

)) = n, for some positive integers
m and n. Let {K1, . . . ,Km} and {L1, . . . , Ln} be two minimal dominating sets in G(τT1

)
and G(τT2

), respectively. It is easy to see that {K1 ×F2, . . . ,Km ×F2, F1 ×L1 . . . F1 ×Ln}
is the smallest dominating set in G(τT ).
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Theorem 6. Let M̄ be a module. Then
γt(G(τT )) = γ(G(τT )) or γt(G(τT )) = γ(G(τT )) + 1.

Proof. Assume that γt(G(τT )) ̸= γ(G(τT )) and D is a γ-set of G(τT ). If γ(G(τT )) = 1,
then it is clear that γt(G(τT )) = 2. So let γ(G(τT )) > 1 and put k = Max{n| there exist
L1, . . . , Ln ∈ D such that ⊓n

i=1Li ̸= F}. Since γt(G(τT )) ̸= γ(G(τT )), we have k ≥ 2. Let
L1, . . . , Lk ∈ D be such that ⊓k

i=1Li ̸= F . Then S = {⊓k
i=1Li, annL̄1, . . . , annL̄k} ∪ D \

{L1, . . . , Lk} is a γt-set. Hence γt(G(τT )) = γ(G(τT )) + 1.

Example 2. Let Cn and Pn be a cycle and a path with n vertices, respectively.

(a) Clearly, γ(Cn) = γ(Pn) = [n/3] (see [17, Example 1]).

(b) Let Z2 × Z3 as Z12-module and T = Spec(M). It is easy to see that G(τT ) = P2 and
γt(P2) = 2 = γ(P2) + 1.

(c) By [9, Lemma 10.9.5], for any split graph G, γt(G) = γ(G). Let Z3×Z4 as Z24-module
and T = Spec(M). The split graph G(τT ) = P4 and γt(P4) = γ(P4) = 2.

Theorem 7. Let M̄ be a faithful module and |Min(R)| <∞. If γ(G(τSpec(M))) > 1, then
γt(G(τSpec(M))) = γ(G(τSpec(M))) = |Min(R)|.

Proof. Since M̄ is a faithful module and γ(G(τSpec(M))) > 1, then R is a reduced ring and
|Min(R)| > 1. Suppose that Min(R) = {p1, . . . , pn}. If n = 2, the result follows from

Theorem 1. Therefore, suppose that n ≥ 3. We define p̂iM̄ = p1 . . . pi−1pi+1 . . . pnM̄ ,

for every i = 1, . . . , n. Clearly, p̂iM̄ ̸= 0̄, for every i = 1, . . . , n. Since R is reduced, we

deduce that p̂iM̄piM̄ = 0̄. Therefore, every piM̄ is a vertex of G(τSpec(M)). If K is a
vertex of G(τSpec(M)), then by [8, Corollary 3.5], (K : M) ⊆ Z(R) = ∪n

i=1pi. It follows
from the Prime Avoidance Theorem that (K : M) ⊆ pi, for some i, 1 ≤ i ≤ n. Thus
piM is a maximal element of V (G(τSpec(M))), for every i = 1, . . . , n. From Theorem 4,
γt(G(τSpec(M))) = |Min(R)|. Now, we show that γ(G(τSpec(M))) = n. Assume to the
contrary, that B = {J1, . . . , Jn−1} is a dominating set for G(τSpec(M)). Since n ≥ 3, the
submodules piM̄ and pjM̄ , for i ̸= j are not adjacent (from pipj = 0 ⊆ pk it would follow
that pi ⊆ pk or pj ⊆ pk which is not true). Because of that, we may assume that for
some k < n − 1, Ji = piM for i = 1, . . . , k, but none of the other of submodules from B
are equal to some psM (if B = {p1M, . . . , pn−1M}, then pnM would be adjacent to some
piM , for i ̸= n). So every submodule in {pk+1M, ..., pnM} is adjacent to a submodule in
{Jk+1, ..., Jn−1}. It follows that for some s ̸= t, there is an l such that (psM)Jl = 0 =
(ptM)Jl. Since ps * pt, it follows that Jl ⊆ ptM , so J2

l = 0, which is impossible, since the
ring R is reduced. So γt(G(τSpec(M))) = γ(G(τSpec(M))) = |Min(R)|.

By Theorem 7, we have the following corollary.

Corollary 5. Let M̄ is a faithful module and |Min(R)| <∞. If γ(G(τSpec(M))) > 1, then
the following are equivalent.
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(a) γ(G(τSpec(M))) = 2.

(b) G(τSpec(M)) = Bn,m such that n,m ≥ 2.

(c) G(τSpec(M)) = Kn,m such that n,m ≥ 2.

(d) R has exactly two minimal primes.

Proof. Follows from Theorem 1 and Theorem 7.

In the following theorem the domination number of bipartite Zariski topology-graphs is
given.

Theorem 8. Let M̄ be a faithful module. If G(τT ) is a bipartite graph, then γ(G(τT )) ≤ 2.

Proof. Assume that M̄ is a faithful module. If G(τT ) is a bipartite graph, then from
Theorem 1, either R is a reduced ring with exactly two minimal prime ideals, or G(τT ) is
a star graph with more than one vertex. If R is a reduced ring with exactly two minimal
prime ideals and γ(G(τT )) = 1, then we are done. If R is a reduced ring with exactly two
minimal prime ideals and γ(G(τT )) > 1, then the result follows by Corollary 5. If G(τT ) is
a star graph with more than one vertex, then we are done.

Theorem 9. If R is a Notherian ring and M̄ a finitely generated faithful module, then
γ(G(τSpec(M))) ≤ |Ass(M̄)| <∞.

Proof. from [19], since R is a Notherian ring and M̄ a finitely generated module, |Ass(M̄)| <
∞. Let Ass(M̄) = {p1, ..., pn}, where pi = (0̄ : Rm̄i) for some m̄i ∈ M̄ for every i = 1, . . . , n.
Set A = {Rmi|1 ≤ i ≤ n}. We show that A is a dominating set of G(τSpec(M)). Clearly,
every Rmi is a vertex of G(τSpec(M)), for i = 1, . . . , n ((piM̄)(m̄iR) = 0̄). If K is a vertex
of G(τSpec(M)), then [19, Corollary 9.36] implies that (K̄ : M̄) ⊆ Z(M̄) = ∪n

i=1pi. It follows
from the Prime Avoidance Theorem that (K̄ : M̄) ⊆ pi, for some i, 1 ≤ i ≤ n. Thus
K̄(Rm̄i) = (0̄), as desired.
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