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Abstract

Let p be an odd prime and t a positive integer. We show that if (u, v) ∈ {(2pt, 1), (pt, 2)},
then the equation x2 + (2uv)m = (u2 + v2)n has only the positive integer solutions
(x,m, n) = (u− v, 1, 1), (u2 − v2, 2, 2).
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1 Introduction

A triple (a, b, c) of positive integers is called a Pythagorean triple if it satisfies a2 + b2 = c2.
If a, b and c are pairwise relatively prime, this triple is called primitive. It is well known
that any primitive Pythagorean triple (a, b, c) with b even can be parameterized as

a = u2 − v2, b = 2uv, c = u2 + v2,

where u, v are positive integers with u > v, gcd(u, v) = 1 and u ̸≡ v (mod 2). In 1956,
Jeśmanovicz [9] conjectured that for any Pythagorean triple (a, b, c), the equation ax+by =
cz has only the positive integer solution (x, y, z) = (2, 2, 2). Although there are a lot
of results supporting it, this conjecture has not been settled yet, even in the case where
(a, b, c) is a primitive Pythagorean triple. For relevant results, see, e.g., the survey paper
[13] by Le-Scott-Styer.

As an analogue of Jeśmanowicz’ conjecture concerning primitive Pythagorean triples,
the third author [14] proposed the following:

Conjecture 1.1. Let u and v be positive integers satisfying

u > v, gcd(u, v) = 1 and u ̸≡ v (mod 2).

Then the equation
x2 + (u2 − v2)m = (u2 + v2)n

has only the positive integer solution (x,m, n) = (2uv, 2, 2).

The third author [14] proved that if p and q are primes such that (i) q2 + 1 = 2p and
(ii) d = 1 or even when q ≡ 1 (mod 4), then the equation x2+qm = pn has only the positive
integer solution (x,m, n) = (p− 1, 2, 2), where d is the order of a prime divisor of (p) in the
ideal class group of Q(

√
−q). Conjecture 1.1 has been verified to be true in many special

cases. However, Conjecture 1.1 remains unsolved (cf. Le [11], Cao-Dong [5] and Yuan-Wang
[18]).

Recently, the first and the third authors [15] also conjectured the following:
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Conjecture 1.2. ([15, Conjecture 1.2]) Fix u and v as above.
(I) If 3u2 − 8uv + 3v2 ̸= −1, then the equation

x2 + (2uv)m = (u2 + v2)n (1.1)

has only the positive integer solutions (x,m, n) = (u− v, 1, 1), (u2 − v2, 2, 2), except for the
case (u, v) = (244, 231), where the equation

x2 + 112728m = 112897n

has exactly the three positive integer solutions (x,m, n) = (13, 1, 1), (6175, 2, 2),
(2540161, 3, 3).
(II) If 3u2 − 8uv + 3v2 = −1, then equation (1.1) has exactly the three positive integer
solutions (x,m, n) = (u− v, 1, 1), (u2 − v2, 2, 2), ((u− v)(2u2 + 2v2 + 1), 1, 3).

It is to be noted that by the results in Bugeaud [4] and Yuan-Hu [17], the equation

x2 +Dm = pn

has at most two positive integer solutions (x,m, n), where D > 2 is an integer and p is an
odd prime not dividing D with (D, p) ̸= (4, 5). This implies that if u2+v2 is a prime power,
then Conjecture 1.2 holds. For more general equations of the form

x2 +Dm = yn

in integer unknowns x, y,m, n satisfying x ≥ 1, y > 1,m ≥ 1, n ≥ 3 and gcd(x, y) = 1, see,
e.g., a couple of papers [2], [3] by Bérczes-Pink and the survey paper [12] by Le-Soydan.

In [15], the authors verified that Conjecture 1.2 holds in several cases. In particular,
they showed the following:

Theorem 1.3. (cf. [15, Theorem 1.3 (i) and Corollary 1.4]) Let p be an odd prime and
t a positive integer. If either (u, v) = (2pt, 1) with p ̸≡ 5 (mod 8) or (u, v) = (pt, 2)
with t ∈ {1, 2}, then equation (1.1) has only the positive integer solutions (x,m, n) =
(u− v, 1, 1), (u2 − v2, 2, 2).

Since it is obvious that 3u2 − 8uv + 3v2 = −1 does not hold for uv = 2pt, equation
(1.1) has only the positive integer solutions (x,m, n) = (u− v, 1, 1), (u2− v2, 2, 2) under the
assumptions in Theorem 1.3.

In this paper, we generalize Theorem 1.3 to prove the following:

Theorem 1.4. Let p be an odd prime and t a positive integer. If (u, v) ∈ {(2pt, 1), (pt, 2)},
then equation (1.1) has only the positive integer solutions (x,m, n) = (u − v, 1, 1), (u2 −
v2, 2, 2).

Theorem 1.4 implies that Conjecture 1.2 is true for (u, v) ∈ {(2pt, 1), (pt, 2)}.

2 Key lemmas

Lemma 2.1. If q = pt for a prime p with p ≡ 1 (mod 4) and a positive integer t, then the
equation

X2 + qm = (4q2 + 1)N (2.1)

has no positive integer solution (X,m,N) with m ≡ N ≡ 1 (mod 2).
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Proof. Since N is odd, putting Y = (4q2+1)(N−1)/2 one can transform (2.1) into the Pellian
equation

X2 − (4q2 + 1)Y 2 = −qm. (2.2)

If m = 1, then, since 4q2 + 1 > q2, (2.2) has no solution by, e.g., [7, Lemma 2.3]. Since m
is odd, we have m ≥ 3. Hence,

(X,Y,m) =

(
2q2 − q + 1

2
,
q − 1

2
, 3

)
is the least solution of a class of solutions to (2.2) (which is defined as the solution (x′, y′,m′)
satisfying x′ > 0, y′ > 0, m′ > 0 with m′ minimal among the solutions in the class). Noting
that q = pt, we see from [10, Theorem 1] that (2.2) has only one class of solutions, and any
primitive solution to (2.2) can be expressed as m = 3m0 and

X + Y
√
4q2 + 1 =

(
2q2 − q + 1

2
± q − 1

2

√
4q2 + 1

)m0 (
8q2 + 1 + 4q

√
4q2 + 1

)k
(2.3)

for a positive integer m0 and a non-negative integer k, where

8q2 + 1 + 4q
√
4q2 + 1 =

(
2q +

√
4q2 + 1

)2
is the fundamental solution to the Pell equation

U2 − (4q2 + 1)V 2 = 1.

However, since q = pt ≡ 1 (mod 4) by assumption, we have (q − 1)/2 ≡ 0 (mod 2). It
follows from (2.3) that Y must be even, which contradicts Y = (4q2 + 1)(N−1)/2.

Lemma 2.2. If u = pt for an odd prime p and a positive integer t, then the equation

x2 + 4u = (u2 + 4)n (2.4)

has only the positive integer solution (x, n) = (u− 2, 1).

Proof. Considering (2.4) modulo 8, one easily sees that n is odd. Putting Y = (u2 +
4)(n−1)/2, we obtain the Pellian equation

x2 − (u2 + 4)Y 2 = −4u. (2.5)

Since any solution to (2.4) corresponds to a solution (x, Y ) with gcd(x, Y ) = 1 (i.e., a
primitive solution (x, Y )) to (2.5), we may apply the argument described in [8, Section
11.5] to solve (2.4).

More precisely, first find an integer l with 0 ≤ l ≤ 2u satisfying

l2 ≡ u2 + 4 (mod 4u).
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Since u = pt, it is not difficult to see that l ∈ {u− 2, u+ 2}. Then, put

η =
l2 − (u2 + 4)

−4u
,

and consider the Pell equation

x2
1 − (u2 + 4)y21 = η, (2.6)

where η = 1 if l = u− 2 and η = −1 if l = u+ 2. Since the continued fraction expansion of√
u2 + 4 is √

u2 + 4 =
[
u, (u− 1)/2, 1, 1, (u− 1)/2, 2u

]
and u = pt is odd, the fundamental solutions to (2.6) are(

u+
√
u2 + 4

2

)6

if η = 1 and

(
u+

√
u2 + 4

2

)3

if η = −1.

Therefore, any positive integer solution (x, Y ) to (2.5) can be expressed as either

x+ Y
√
u2 + 4 =

{
±(u− 2) +

√
u2 + 4

}(u+
√
u2 + 4

2

)6k1

for a non-negative integer k1 or

x+ Y
√
u2 + 4 =

{
(u+ 2)±

√
u2 + 4

}(u+
√
u2 + 4

2

)3k2

for a positive odd integer k2. Noting that{
(u+ 2)−

√
u2 + 4

} u+
√
u2 + 4

2
= u− 2 +

√
u2 + 4,{

(u+ 2) +
√
u2 + 4

} u+
√
u2 + 4

2
= u2 + u+ 2 + (u+ 1)

√
u2 + 4

=
{
−(u− 2) +

√
u2 + 4

}(u+
√
u2 + 4

2

)2

,

we may express any solution to (2.5) as

x+ Y
√

u2 + 4 =
{
±(u− 2) +

√
u2 + 4

}(u+
√
u2 + 4

2

)2k

(2.7)

for a non-negative integer k.
The rest of the proof will proceed along the same lines as the proof of [15, Proposition

3.2]. Indeed, from (2.7) we easily see that

x ≡ ±(u− 2) (mod (u2 + 4)). (2.8)
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Now, let (x, n) = (x1, n1) be a solution to (2.4). Then, the Diophantine equation

x2 + 4uy2 = (u2 + 4)n (2.9)

has the solution (x, y, n) = (x1, 1, n1). By [10, Lemmas 2 and 6], there exists a unique
integer l such that

x1 ≡ ±l (mod (u2 + 4)), l2 ≡ −4u (mod (u2 + 4)), 0 < l <
u2 + 4

2
. (2.10)

It follows from (2.8) and (2.10) that l = u−2. Note that (u−2)2+4u = u2+4 and that the
solution class S of (2.9) to which (x1, 1, n1) belongs has a solution (x, y, n) = (u− 2, 1, 1),
which is clearly the least solution of S. Thus, [10, Theorem 2] implies that (x, n) = (x1, n1)
is a solution to the equation

x+ 2
√
−u = λ1

(
u− 2 + 2λ2

√
−u
)n

(2.11)

with λ1, λ2 ∈ {±1}. Let α = u − 2 + 2
√
−u and β = u − 2 − 2

√
−u. Then, it is obvious

that α+ β = 2(u− 2) and αβ = u2 + 4 are coprime, and that

α

β
=

u2 − 8u+ 4 + 4(u− 2)
√
−u

u2 + 4

is not a root of unity in Q(
√
−u ). Hence, (α, β) is a Lucas pair. Moreover, if we define

Un(α, β) = (αn − βn)/(α− β), then we have Un1(α, β) = ±1, which implies that Un1(α, β)
has no primitive divisor. Since n1 is odd (see the beginning of the proof), we conclude from
[1, Theorem 1.4] and [16, Theorem 1] that n1 ∈ {1, 3}. If n1 = 1, then x1 = u − 2, which
corresponds to the solution given in the assertion. If n1 = 3, then we see from (2.11) that
3u2− 16u+12 = ±1 and hence u = 1, which contradicts u = pt with t > 0. This completes
the proof of Lemma 2.2.

Remark 2.3. In the proof of Lemma 2.2, since α and β are complex (not real), we applied
the results in [1] and [16]. In case α and β are real, one can appeal to Carmichael’s theorem
[6, Theorem XXIII].

3 Proof of Theorem 1.4

Proof of Theorem 1.4. Consider first the case where (u, v) = (2pt, 1). In view of Corollary
1.4, Propositions 3.1, 4.2 and the proof of Theorem 1.3 (i) in [15], it only remains to prove
that the equation 22m−2 + qm = (4q2 + 1)N has no positive integer solution (m,N) with
m ≡ N ≡ 1 (mod 2) in the case where p ≡ 5 (mod 8), which is confirmed by Lemma 2.1.

Consider second the case where (u, v) = (pt, 2). By Proposition 4.1 and the proof of
Theorem 1.3 (ii) in [15], it suffices to show that equation (2.4) has only the positive integer
solution (x, n) = (u − 2, 1) in case u = pt, which is exactly what Lemma 2.2 asserts. This
completes the proof of Theorem 1.4.
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