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Abstract

In this paper, we obtain a lower bound for the smallest eigenvalue of a regular
graph containing many copies of a smaller fixed subgraph. This generalizes a result of
Aharoni, Alon, and Berger in which the subgraph is a triangle. We apply our results
to obtain a lower bound on the smallest eigenvalue of the associahedron graph, and
we prove that this bound gives the correct order of magnitude of this eigenvalue. We
also survey what is known regarding the second-largest eigenvalue of the associahedron
graph.
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1 Introduction

Our graph notation is standard, see [7] for undefined terms or notations. The eigenvalues
of a graph G = (V,E) are the eigenvalues of its adjacency matrix A = A(G). For a
graph G with n vertices and ` ≥ 1, denote by λ`(G) the `-th greatest eigenvalue of G and
let λ`(G) = λn−`+1(G) be its `-th smallest eigenvalue. Let λmin(G) denote the smallest
eigenvalue λ1(G). The smallest eigenvalue of a graph is related to its chromatic number
and independence number [7, 15] and has close connections to the max-cut of the graph
[4, 6, 17, 20]. Since the spectrum of a connected graph is symmetric if and only if the
graph is bipartite (see [7, Section 3.4] for example), it is natural to think of λmin(G) as
a measure of the bipartiteness of G (see [39]). Aharoni, Alon, and Berger [2] obtained a
lower bound for the smallest eigenvalue of a regular graph where each vertex is contained in
many triangles (see also [8]). Knox and Mohar [21] obtained a lower bound for the smallest
eigenvalue using graph decompositions and their work leads to a simpler proof of a result
of Qiao, Jing, and Koolen [33] on the smallest eigenvalue of a distance-regular graph.

In Section 2, we obtain the following lower bound for the smallest eigenvalue of a regular
graph.

Theorem 1. Let K = (V,E) be a k-regular graph with v vertices. Let G be a d-regular
graph having a collection K of subgraphs isomorphic to K such that each vertex of G is
contained in at least m copies of K and each edge of G is contained in at most t copies of
K. Then

d+ λmin(G) ≥ (k + λmin(K)) · m
t
. (1.1)
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This result implies the bound of Aharoni, Alon, and Berger [2]. We will use the following
corollary to find a lower bound for the smallest eigenvalue of the associahedron graph.

Corollary 1. Let d ≥ 3 and m, r, t ≥ 1 be integers. Let G be a d-regular graph having a
collection C of subgraphs isomorphic to C2r+1 such that each vertex of G is contained in at
least m cycles of length 2r+ 1 and each edge of G is contained in at most t cycles of length
2r + 1. Then

d+ λmin(G) ≥ 4 sin2

(
π

4r + 2

)
· m
t
. (1.2)

In Section 3, we discuss the flip graph on the triangulations of a convex n-gon, also known
as the associahedron graph An. Let n ≥ 4 and consider a convex n-gon P whose vertices
are labeled 1, 2, . . . , n. The set of vertices Tn of An consists of the triangulations of P with
n − 3 non-crossing diagonals. Two distinct triangulations are adjacent if they share n − 4
diagonals. Equivalently, each neighbor of a triangulation T can be obtained by flipping one
of its diagonals (deleting one of its diagonals, creating a quadrilateral in which one adds
the other diagonal). The associahedron graph An is 1-skeleton of the associahedron, an
(n− 3)-dimensional convex polytope that arises in many areas of mathematics [14, 27, 31]
and is also known as the Stasheff polytope [37] or the Tamari lattice [38]. The graph An
is (n − 3)-regular and its number of vertices equals the Catalan number Cn−2 =

(2n−4
n−2 )
n−1 .

The combinatorial properties of An have been investigated by several authors. Lucas [26]
showed that An is Hamiltonian when n ≥ 5. Lee [22] proved that the automorphism
group of An is the dihedral group of order 2n. Pournin [32] determined its diameter and
showed that it equals 2n − 10 for n > 12, confirming a conjecture of Sleator, Tarjan, and
Thurston [35]. Molloy, Reed, and Steiger [30] studied the properties of the usual Markov
chain/random walk on An in which one starts at a vertex and then selects a neighbor
uniformly at random. Some of their results were improved by McShine and Tetali [29] and
more recently by Eppstein and Frishberg [11].

In [12], Fabila-Monroy, Flores-Penaloza, Huemer, Hurtado, Urrutia, and Wood study
the chromatic number of various flip graphs such as the flip graph on perfect matchings of
the complete graph K2n (see [9] for related results) and the associahedron graph An for
n ≥ 5. The chromatic number of the associahedron graph An is obtained by computer in
[12] and equals 3 for 5 ≤ n ≤ 9 and 4 when n = 10. We have confirmed these computations.
In [12], the authors conjecture that the chromatic number χ(An)→∞ as n→∞ and that
χ(An) = O(log n). The second conjecture was proved recently by Addario-Berry, Reed,
Scott, and Wood [1], but the first conjecture is still open. Since χ(An) ≥ 1 + n−3

−λmin(An)

(see [7, Theorem 3.6.2] or [18]), proving that λmin(An) = o(n) would imply the conjecture
from [12].

In this paper, we show that this is not the case and actually λmin(An) = Θ(n). The

graph An is an induced subgraph of the Johnson graph J
(
n(n−3)

2 , n− 3
)

. The eigenvalues

of the Johnson graph are known (see [6, 10]). Using Loday [25], one can also observe that the
graph An is an induced subgraph of the simplicial rook graph SR

(
n− 2,

(
n−1
2

))
introduced

by Martin and Wagner [28] (see also [5]). We have not been able to use these facts to
calculate the eigenvalues of An. Instead, we will use Corollary 1 and Cauchy eigenvalue
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interlacing to prove the following results. For n ≥ 5, we show that

λmin(An) ≥ −5−
√

5

8
(n− 3)− 3−

√
5

8
. (1.3)

Using eigenvalue interlacing and computations of the smallest eigenvalue of An for n ≤ 12,
we prove that

λmin(An) ≤ −0.6904n+ cr, (1.4)

where cr is some constant that depends on the value of the remainder r of n when divided

by 10. We also show that the limit limn→∞
λmin(An)
n−3 exists and

−0.6904 ≥ lim
n→∞

λmin(An)

n− 3
≥ −5−

√
5

8
≈ −0.9045. (1.5)

2 Proof of Theorem 1

We will use the following lemma.

Proposition 2. Let K = (V,E) be a k-regular graph. For any vector x ∈ RV ,∑
ij∈E

(xi + xj)
2 ≥ (k + λmin(K))

∑
`∈V

x2` .

Proof. Let A be the adjacency matrix of K. Because xTAx ≥ λminxTx, it follows that∑
ij∈E

(xi + xj)
2 = xT (kI +A)x ≥ (k + λmin(K))

∑
`∈V

x2` .

We now give the proof of Theorem 1.

Proof. Let x be an eigenvector of euclidean norm one corresponding to λmin(G). If A
denotes the adjacency matrix of G, then

d+ λmin(G) = xT (dI +A)x =
∑

uv∈E(G)

(xu + xv)
2.

For each edge uv, let cuv denote the number of copies of K from K that contain uv. From
our hypothesis, cuv ≤ t. For a vertex w, let cw denote the number of copies of K from K
containing w. Then cw ≥ m. For H ∈ K, denote

σ(H) =
∑

uv∈E(H)

(xu + xv)
2.

Proposition 2 implies that

σ(H) ≥ (k + λmin(K))
∑

w∈V (H)

x2w.
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Summing up over all the graphs in K, we get that∑
H∈K

σ(H) ≥ (k + λmin(K))
∑
H∈K

∑
w∈V (H)

x2w = (k + λmin(K))
∑

w∈V (G)

cwx
2
w

≥ (k + λmin(K))m.

On the other hand,∑
H∈K

σ(H) =
∑
H∈K

∑
uv∈E(H)

(xu + xv)
2 =

∑
uv∈E(G)

cuv(xu + xv)
2

≤ t
∑

uv∈E(G)

(xu + xv)
2 = t(d+ λmin(G)).

Combining these last two inequalities gives the desired result.

Corollary 1 follows by taking K = C2r+1. Taking K = K3, t = d− 1, one gets Theorem
1 from [2] restricted to regular graphs.

3 Proof of inequality (1.3)

The graph An does not contain any triangles, but it contains cycles of length 5 and we take
advantage of this fact and use Corollary 1 to obtain a lower bound for λmin(An). First we
need to show that each vertex of An is contained in at least n − 4 cycles of length 5 and
each edge is contained in at most 4 cycles of length 5.

Let T be a vertex of An. It corresponds to a triangulation of the n-gon into n − 2
triangles using n − 3 non-crossing diagonals. A triangle from this triangulation is called
an ear if two of its sides are the sides of the n-gon and is called interior if all its sides are
diagonals. We can associate a tree to T as follows: the vertices correspond to the triangles
of T and two triangles are adjacent if and only if they share one side/diagonal (see [36,
Theorem 1.5.1]). We observe that this tree has n − 2 vertices and each vertex of it has
degree 1, 2, or 3. Vertices of degree one correspond to the ears of the triangulation and
vertices of degree three correspond to the interior triangles.

Lemma 1. A cycle of length 5 in An that contains a triangulation T , corresponds to two
incident diagonals of T whose removal creates a pentagon in T .

Proof. To see this, we take a triangle, say t, in T of degree 2 or 3. Then by flipping the
incident diagonals, as shown in Figure 1 (left), we get a 5-cycle in An. Now suppose there
is 5-cycle in An containing T that is not of this form. Let Ta, Tb be the neighbors of T
in the 5-cycle, where Ti denotes the triangulation we get after flipping the diagonal i of T
and let Ta,c ∼ Ta in the 5-cycle, see Figure 1 (right). If b = c, then Ta,b ∼ Tb, but since
An does not contain a triangle, we get a contradiction. If b 6= c, then there can not exist a
triangulation which is adjacent to both Tb and Ta,c.

Proposition 3. Let n ≥ 5 and T be a vertex/triangulation of An. If t1 equals the number
of ears of T , then T is contained in n− 6 + t1 ≥ n− 4 cycles of length 5 in An.



S. M. Cioabă, V. Gupta 397
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×

Figure 1: Left: a 5-cycle in An containing T . We depict the n-gon as a circle for simplicity.
Right: there can not be a 5-cycle in An which is not of the form as shown in figure on the
left.

Proof. Denote by G = (V,E) the tree associated with T . For j ∈ {1, 2, 3}, let tj denote the
number of vertices of degree j in G. Since there are n−2 triangles in T , t1 + t2 + t3 = n−2.
The Handshaking Lemma implies that t1 + 2t2 + 3t3 = 2(n− 3). Therefore, t3 = t1− 2 and
t2 = n− 2t1.

By Lemma 1, the number of cycles of length 5 containing T equals
∑
v∈V

(
dv
2

)
, where dv

denotes the degree of the vertex v in G. It is not hard to see that the previous expression
is the same as t2 + 3t3 = n− 2t1 + 3(t1 − 2) = n− 6 + t1. Since G is a tree, it has at least
two leaves and therefore t1 ≥ 2. This finishes our proof.

Proposition 4. Let n ≥ 5. If T and T ′ are two adjacent vertices in An, then the edge TT ′

is contained in at least one and at most four cycles of length 5 in An.

Proof. Because T and T ′ are adjacent in An, they have n−4 diagonals in common. Consider
the two diagonals from the symmetric difference of T and T ′. They are the diagonals of
a 4-gon F . A cycle of length 5 containing the edge TT ′ in An corresponds to a side of F
(see Figure 1) that is a diagonal of T ∩ T ′ (or equivalently, not a side of the n-gon P ). The
4-gon F can have at least one and at most four such sides. This finishes our proof.

Combining Theorem 1 with Proposition 3 and Proposition 4, we obtain inequality (1.3).

4 Proof of inequality (1.4)

We start with a simple observation.
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Proposition 5. If k, ` ≥ 4, then

λmin(Ak+`) ≤ λmin(Ak) + λmin(A`). (4.1)

Proof. Recall that the Cartesian or box product H2K of two graphs H = (V,E) and
K = (W,F ) has vertex set V ×W and (a1, b1) is adjacent to (a2, b2) if a1 ∼ a2 and b1 = b2
or a1 = a2 and b1 ∼ b2. The adjacency matrix of H2K equals A(H) ⊗ IW + IV ⊗ A(K)
and therefore the eigenvalues of A(H2K) are of the form θ + τ , where θ is an eigenvalue
of A(H) and τ is an eigenvalue of A(K). In particular, the smallest eigenvalue of H2K
equals λmin(H) + λmin(K).

Recall that the vertices of the k+`-gon P are labeled 1, 2, . . . , k+` in clockwise direction.
Consider the subgraph induced by the triangulations containing the diagonal connecting
vertex 1 to vertex k. This subgraph is isomorphic to Ak2A`+2. Using Cauchy eigenvalue
interlacing (see [7] for example) and the previous paragraph, we deduce that λmin(Ak+`) ≤
λmin(Ak) + λmin(A`+2). It is not too hard to see that λmin(An) is decreasing with n (use
Cauchy interlacing and the fact that An is an induced subgraph of An+1 for n ≥ 4), we get
the desired result.

The Fekete/subadditivity lemma (see [13] or [24, Lemma 11.6]) now implies that the
following limit exists:

lim
n→∞

λmin(An)

n
.

For n ≤ 12, we computed below the smallest eigenvalue of An rounded up to the first
three decimal points.

n− 3 2 3 4 5 6 7 8 9
λmin -1.618 -2.414 -3.177 -3.912 -4.667 -5.409 -6.157 -6.904

Let n = 10(k + 1) + 2 for k ≥ 1. Recall that the vertices of the n-gon P are labeled
1, 2, . . . , n in clockwise direction. Consider the subgraph induced by the triangulations
containing the diagonal connecting vertex 1 to vertex 12. It is not too hard to see that this
subgraph is isomorphic to the box product A122An−10. Using Cauchy interlacing and the
previous paragraph, we have that

λmin(An) ≤ λmin(A122An−10) = λmin(A12) + λmin(An−10)

≤ −6.904 + λmin(An−10).

Repeating this argument for n− 10, n− 20, . . . , 22, we get that

λmin(An) ≤ −6.904× n− 2

10
= −0.6904(n− 2) = −0.6904n+ 1.3808.

Similar upper bounds can be obtained when n = 10(k+ 1) + r for other values of r between
0 and 9. The results in this section and in the previous section imply the inequalities in
(1.5).
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5 The second eigenvalue of An
Molloy, Reed, and Steiger [30] studied the properties of the random walk on An in which
one starts at a vertex and then selects a neighbor uniformly at random. These authors
proved that for any subset S ⊂ Tn with |S| ≤ |Tn|/2, there is a matching between S and

its complement S having at least |S||S|
|Tn|n11 edges leading to a lower bound of 1

2n12 for the

conductance of An. Molloy, Reed, and Steiger proved that at least Ω(n3/2) and at most

O(n23 log n) steps are sufficient to get close (within ε in variation distance) to the stationary
distribution (which is the uniform distribution over the vertices of An). McShine and Tetali
[29] improved the upper bound to O(n5 log(n/ε)) and recently, Eppstein and Frishberg [11]
further improved the upper bound to O(n4.75).

Denote λ2 = λ2(An). For ε ∈ (0, 1), let τ(ε) denote the mixing time of the Markov chain
on An (see [29], [34, p.61]), then

n− 3

n− 3− λ2
log(Cn−2/ε) ≥ τ(ε) ≥ λ2

2(n− 3− λ2)
. (5.1)

For n ≤ 12, we computed the second eigenvalue of An rounded down to the first three
decimal points.

n− 3 2 3 4 5 6 7 8 9
λ2 0.618 2 3.231 4.383 5.488 6.564 7.622 8.667

It seems that the second eigenvalue of An tends to n−3. Aldous [3] proved the following
result and the proof below is a reformulation due to Vishesh Jain.

Theorem 6. There is a positive constant c such that λ2(An) ≥ (n− 3)− c√
n
.

Proof. Note that the assertion is equivalent to the statement that the spectral gap γ =
1 − λ2 of the aforementioned random walk on An is O(n−3/2). Let π denote the uniform
distribution on An. By standard Markov chain theory (see, e.g., Lemma 13.7 in [23]), it
suffices to exhibit a non-constant function f : An → R for which

EX0,X1
[(f(X1)− f(X0))2]

Varπ(f)
= O(n−3/2),

where (X0, X1) are consecutive steps of the random walk on An with the initial state X0

distributed according to π.
This follows by a slight modification of the Ω(n3/2) lower bound on the mixing time of

the random walk, due to Molloy, Reed, and Steiger [30]; we refer the reader to Section 3
in their paper [30] for the terminology used in the remainder of the proof. For τ ∈ An, let
f(τ) denote the minimum distance between any vertex of the central triangle of τ and the
point pbn/4c. By symmetry considerations, Varπ(f) = Θ(n2), so it remains to show that

EX0,X1 [(f(X1)− f(X0))2] = O(
√
n).

For this, let E denote the event that one of the edges involved in the central triangle of X0

is chosen to be flipped, and note that f(X1) − f(X0) = 0 on the complement of E . Since
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PX0,X1 [E ] = Θ(1/n), we have that

EX0,X1
[(f(X1)− f(X0))2] = EX0,X1

[(f(X1)− f(X0))2 | E ] · PX0,X1
[E ]

= O(EX0,X1 [(f(X1)− f(X0))2 | E ] · n−1)

= O(n3/2 · n−1),

where the last line follows using the same computation as the one below Equation (4) in
[30].

Aldous [3] conjectures that the relaxation time of the random walk is O(n3/2). This is

equivalent to that there exists a positive constant c′ such that λ2(An) ≤ (n− 3)− c′√
n
. By

(5.1), we also get that the above random walk mixes in O(n3/2 log |An|) which is O(n2.5).

6 Final remarks

Our arguments in Section 2 and Section 3 use the cycle C5 since the associahedron graph
A5 is isomorphic to C5. A natural questions is to see what happens when A5 is replaced
by A6. The graph A6 is 3-regular and has the following eigenvalues (the exponents below
are the multiplicities):

3(1), 2(2),
√

3
(1)
, 0(2), (1−

√
2)(3),−1(1),−

√
3
(1)
, (−1−

√
2)(3).

By a similar argument to Proposition 3, one can prove the following results.

Proposition 7. Let n ≥ 6 and T be a vertex of An. The number of subgraphs of An that
are isomorphic to A6 and contain T equals the number of connected subgraphs with four
vertices in the dual tree of T .

Proof. A subgraph isomorphic to A6 that contains T is the same as a collection of three
diagonals of T whose deletion creates a hexagon. These three diagonals correspond to a
connected subgraph with four vertices (or three edges) in the dual tree of T .

If H = (W,F ) is the dual tree of the triangulation T , then a connected subgraph
of W with four vertices is either a path P4 or a star K1,3. The number of P4s equals∑
xy∈F (dx−1)(dy−1). It is fairly straightforward to show that this sum is minimized with

H is the path Pn−2 for which it equals n− 5. Hence, every triangulation T is contained in
at least n− 5 subgraphs isomorphic to A6.

Proposition 8. Let n ≥ 6. If T and T ′ are two adjacent vertices in An, then the edge TT ′

is contained in at least one and at most fourteen subgraphs of An that are isomorphic to
A6.

Proof. The edge TT ′ corresponds to n − 4 non-intersecting diagonals in the polygon P .
These diagonals partition the interior of the polygon into one quadrilateral Q and n − 4
triangles. There is at most one triangle neighboring the quadrilateral on each of its four
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sides. Therefore, there are at most
(
4
2

)
= 6 ways to choose two of these triangles to obtain

a hexagon containing Q. Each of these four triangles could have two triangles neighboring
them. Thus, Q could also be contained in 4× 2 other hexagons.

Using the results of this section, one can obtain that

(n− 3) + λmin(An) ≥ (2−
√

2)(n− 5)

14
.

Unfortunately, this seems to be a worse estimate than our lower bound in (1.3). We
hope that our methods for bounding the smallest eigenvalue of An can be used for other
families of graphs. We finish our paper with a natural open problem, namely determining
the limit

lim
n→∞

λmin(An)

n− 3
.
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