Degree conditions and path factors with inclusion or exclusion properties by
 SiZhong Zhou

Abstract

A spanning subgraph F of a graph G is called a path factor if every component of F is a path. For an integer $d \geq 2$, a $P_{\geq d}$-factor of a graph G is a spanning subgraph F such that every component is isomorphic to a path of k vertices for some $k \geq d$. A graph G is called a $P_{\geq d}$-factor covered graph if for any $e \in E(G), G$ has a $P_{\geq d}$-factor covering e. A graph G is called a $P_{\geq d}$-factor deleted graph if for any $e \in E(G), G$ has a $P_{\geq d}$-factor excluding e. In this article, we verify that (i) a k-connected graph G with at least n vertices admits a $P_{\geq 3}$-factor if G satisfies $\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k+1}\right)\right\} \geq \frac{n}{3}$ for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k+1}\right\}$ of G, where $k \geq 1$ and $n \geq 4 k+4$ are two integers; (ii) a k-connected graph G with at least n vertices is a $P_{\geq 3}$-factor covered graph if G satisfies $\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n+2}{3}$ for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k-1}\right\}$ of G, where $k \geq 1$ and $n \geq 4 k+2$ are two integers; (iii) a $(k+1)$-connected graph G with at least n vertices is a $P_{\geq 3}$-factor deleted graph if G satisfies $\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n}{3}$ for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k-1}\right\}$ of G, where $k \geq 1$ and $n \geq 4 k+2$ are two integers.

Key Words: Graph, degree condition, $P_{\geq 3}$-factor, $P_{\geq 3}$-factor covered graph, $P_{\geq 3}$-factor deleted graph.
2020 Mathematics Subject Classification: Primary 05C70; Secondary 05C38, 90B10.

1 Introduction

In this article we deal with finite, undirected and simple graphs. We denote by $G=$ $(V(G), E(G))$ a graph, where $V(G)$ denotes the vertex set of G and $E(G)$ denotes the edge set of G. For $x \in V(G)$, the degree of x in G, denoted by $d_{G}(x)$, is the number of vertices adjacent to x in G. For any $X \subseteq V(G)$, we denote by $G-X$ the subgraph derived from G by removing vertices in X together with the edges incident to vertices in X. For $E^{\prime} \subseteq E(G), G-E^{\prime}$ denotes the subgraph derived from G by removing E^{\prime}. In particular, we write $G-x=G-\{x\}$ for any $x \in V(G)$ and $G-e=G-\{e\}$ for any $e \in E(G)$. A vertex subset X of G is called independent if no two vertices in X are adjacent to each other. Let $i(G)$ and $c(G)$ denote the number of isolated vertices and connected components of G, respectively. The isolated vertex set of G is denoted by $I(G)$, and so $i(G)=|I(G)|$. We denote by K_{n} the complete graph of order n, and by P_{n} the path of order n. For two graphs G_{1} and G_{2}, we denote by $G_{1} \vee G_{2}$ the join of G_{1} and G_{2}.

A spanning subgraph F (i.e. $V(F)=V(G))$ of a graph G is called a 1-factor if $d_{F}(x)=1$ holds for all $x \in V(G)$. A graph H is factor-critical if every induced subgraph of order $|V(H)|-1$ has a 1-factor. A graph R is called a sun if $R=K_{1}, R=K_{2}$ or R is the corona

Figure 1: A factor-critical graph H and the sun R obtained from H.
of a factor-critical graph H with at least three vertices, namely, R is derived from H by adding a new vertex $u=u(v)$ together with a new edge $u v$ for each $v \in V(H)$ to H (Figure 1 , which was shown by Kano, Lu and $\mathrm{Yu}[9]$). Obviously, $d_{R}(u)=1$. A sun of order n with $n \geq 6$ is called a big sun. A component of a graph G is called a sun component if it is isomorphic to a sun. Let $\operatorname{sun}(G)$ denote the number of sun components of G. In fact, $i(G) \leq \operatorname{sun}(G) \leq c(G)$.

A spanning subgraph F of a graph G is called a path factor if every component of F is a path. For an integer $d \geq 2$, a $P_{\geq d}$-factor of a graph G is a spanning subgraph F such that every component is isomorphic to a path of k vertices for some $k \geq d$. A graph G is called a $P_{\geq d}$-factor covered graph if for any $e \in E(G), G$ has a $P_{\geq d}$-factor covering e. A graph G is called a $P_{\geq d}$-factor deleted graph if for any $e \in E(G), G$ has a $P_{\geq d}$-factor excluding e.

Wang [12] presented a criterion for a bipartite graph admitting a $P_{\geq 3}$-factor. Kaneko [6] established a criterion for a graph to have a $P_{\geq 3}$-factor. Kano, Katona and Király [7] posed a shorter proof of Kaneko's result. Ando, Egawa, Kaneko, Kawarabayshi and Matsuda [1] verified that a claw-free graph with minimum degree at least d admitted a $P_{\geq d+1}$-factor. Zhang and Zhou [16] raised a characterization for a $P_{\geq 3}$-factor covered graph. Zhou [18] derived a sufficient condition for the existence of a $P_{\geq 3}$-factor covered graph. Zhou [20, 21], Gao, Wang and Cheng [3] gave some sufficient conditions for graphs to be $P_{\geq 3}$-factor deleted graphs. Zhou, Sun and Liu [25], Hua [5], Zhou, Yang and Xu [28] got some results on the existence of $P_{>3}$-factor graphs with given properties. Some other results on path factors can be referred to Kano, Lee and Suzuki [8], Kelmans [10], Egawa, Furuya and Ozeki [2], Zhou, Bian and Pan [22], Zhou, Bian and Sun [23]. Some relationships between degree conditions and graph factors were derived by Zhou, Xu and Sun [27], Zhou, Liu and Xu [24], Zhou, Zhang and Xu [29], Gao, Wang and Guirao [4], Wang and Zhang [13], Lv [11], Zhou [17], Zhou, Sun and Pan [26]. Some other results on graph factors can be found in Wang and Zhang [14], Yuan and Hao [15], Zhou [19].

The following results on path factors and path factor covered graphs are known, which play a key role in the proof of our main theorems.
Theorem 1 ([6]). A graph G admits a $P_{\geq 3}$-factor if and only if

$$
\operatorname{sun}(G-X) \leq 2|X|
$$

for all $X \subseteq V(G)$.

Theorem 2 ([16]). A connected graph G is a $P_{\geq 3}$-factor covered graph if and only if

$$
\operatorname{sun}(G-X) \leq 2|X|-\varepsilon(X)
$$

for all $X \subseteq V(G)$, where $\varepsilon(X)$ is defined by

$$
\varepsilon(X)= \begin{cases}2, & \text { if } X \text { is not an independent set; } \\ 1, & \text { if } X \text { is a nonempty independent set, and } G-X \text { admits } \\ & \text { a non }- \text { sun component } ; \\ 0, & \text { otherwise. }\end{cases}
$$

In this article, we study $P_{\geq 3}$-factors of graphs, $P_{\geq 3}$-factor covered graphs and $P_{\geq 3^{-}}$ factor deleted graphs. Then we establish the relationship between degree conditions and $P_{\geq 3}$-factors of graphs (or $P_{\geq 3}$-factor covered graphs, or $P_{\geq 3}$-factor deleted graphs), which are shown in Sections 2-4.

$2 \quad P_{\geq 3}$-factors in graphs

Next, we pose the main theorem in this section.
Theorem 3. A k-connected graph G with n vertices admits a $P_{\geq 3}$-factor if G satisfies

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k+1}\right)\right\} \geq \frac{n}{3}
$$

for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k+1}\right\}$ of G, where $k \geq 1$ and $n \geq 4 k+4$ are two integers.

Proof. Suppose, to the contrary, that G has no $P_{\geq 3}$-factor. Then it follows from Theorem 1 that there exists some vertex subset X of G such that

$$
\begin{equation*}
\operatorname{sun}(G-X) \geq 2|X|+1 \tag{1}
\end{equation*}
$$

Claim 1. $|X| \geq k$.
Proof. Let $|X| \leq k-1$. Then $G-X$ is connected since G is k-connected, namely, $c(G-X)=$ 1. Combining this with (1), we derive

$$
2|X|+1 \leq \operatorname{sun}(G-X) \leq c(G-X)=1
$$

Thus, we get $|X|=0$ and $\operatorname{sun}(G-X)=1$. Combining this with $n \geq 4 k+4$, we see that G is a big sun. We denote by R the factor-critical graph of G with $|V(R)|=\frac{1}{2} n$. Obviously, there exists an independent set $\left\{x_{1}, x_{2}, \cdots, x_{2 k+1}\right\} \subseteq V(G) \backslash V(R)$ since $n \geq 4 k+4$, and so $d_{G}\left(x_{i}\right)=1$ for $1 \leq i \leq 2 k+1$. By the degree condition of Theorem 3, we admit

$$
\frac{n}{3} \leq \max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k+1}\right)\right\}=1
$$

and so $n \leq 3$, which contradicts $n \geq 4 k+4 \geq 8$ since $k \geq 1$. Claim 1 is verified.
Claim 2. $i(G-X) \leq 2 k$.

Proof. Assume that $i(G-X) \geq 2 k+1$, which implies that there exist at least $2 k+1$ isolated vertices $z_{1}, z_{2}, \cdots, z_{2 k+1}$ in $G-X$. And so, $d_{G-X}\left(z_{i}\right)=0$ for $1 \leq i \leq 2 k+1$. Thus, we deduce

$$
\begin{equation*}
d_{G}\left(z_{i}\right) \leq d_{G-X}\left(z_{i}\right)+|X|=|X| \tag{2}
\end{equation*}
$$

for $1 \leq i \leq 2 k+1$.
Combining the degree condition of Theorem 3 with an independent subset $\left\{z_{1}, z_{2}, \cdots, z_{2 k+1}\right\}$ of G, we admit

$$
\begin{equation*}
\max \left\{d_{G}\left(z_{1}\right), d_{G}\left(z_{2}\right), \cdots, d_{G}\left(z_{2 k+1}\right)\right\} \geq \frac{n}{3} \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that

$$
\begin{equation*}
|X| \geq \max \left\{d_{G}\left(z_{1}\right), d_{G}\left(z_{2}\right), \cdots, d_{G}\left(z_{2 k+1}\right)\right\} \geq \frac{n}{3} \tag{4}
\end{equation*}
$$

In terms of (1) and (4), we get

$$
n \geq|X|+\operatorname{sun}(G-X) \geq|X|+2|X|+1=3|X|+1 \geq 3 \cdot \frac{n}{3}+1=n+1
$$

which is a contradiction. This completes the proof of Claim 2.
In view of (1) and Claim 1, we have

$$
\begin{equation*}
\operatorname{sun}(G-X) \geq 2|X|+1 \geq 2 k+1 \tag{5}
\end{equation*}
$$

It follows from (5) that there exist t sun components in $G-X$, denoted by $H_{1}, H_{2}, \cdots, H_{t}$, where $t \geq 2 k+1$. Select $v_{i} \in V\left(H_{i}\right)$ with $d_{H_{i}}\left(v_{i}\right) \leq 1, i=1,2, \cdots, 2 k+1$. It is obvious that $\left\{v_{1}, v_{2}, \cdots, v_{2 k+1}\right\}$ is an independent set of G. Combining this with the degree condition of Theorem 3, we get

$$
\begin{equation*}
\max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \cdots, d_{G}\left(v_{2 k+1}\right)\right\} \geq \frac{n}{3} \tag{6}
\end{equation*}
$$

Without loss of generality, assume $d_{G}\left(v_{1}\right) \geq \frac{n}{3}$ by (6). Hence, we deduce

$$
d_{G[X]}\left(v_{1}\right)=d_{G}\left(v_{1}\right)-d_{H_{1}}\left(v_{1}\right) \geq \frac{n}{3}-1
$$

where $G[X]$ denotes the subgraph induced by X in G, and so

$$
\begin{equation*}
|X| \geq d_{G[X]}\left(v_{1}\right) \geq \frac{n}{3}-1 \tag{7}
\end{equation*}
$$

In terms of (1), (7), Claim $2, k \geq 1$ and $n \geq 4 k+4$, we derive

$$
\begin{aligned}
n & \geq|X|+2 \cdot \operatorname{sun}(G-X)-i(G-X) \\
& \geq|X|+2(2|X|+1)-2 k \\
& =5|X|-2 k+2 \\
& \geq 5\left(\frac{n}{3}-1\right)-2 k+2 \\
& =n+\frac{2 n}{3}-2 k-3 \\
& \geq n+\frac{2(4 k+4)}{3}-2 k-3 \\
& =n+\frac{2 k}{3}-\frac{1}{3} \\
& \geq n+\frac{1}{3} \\
& >n
\end{aligned}
$$

which is a contradiction. The proof of Theorem 3 is complete.
Remark 1. Next, we claim that

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k+1}\right)\right\} \geq \frac{n}{3}
$$

in Theorem 3 cannot be replaced by

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k+1}\right)\right\} \geq \frac{n-1}{3}
$$

Let $k \geq 1$ be an integer and r be a sufficiently large integer. Let $G=K_{k r} \vee\left((2 k r+1) K_{1}\right)$. Then we see that G is $k r$-connected, $n=3 k r+1$ and

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k+1}\right)\right\}=k r=\frac{n-1}{3}
$$

for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k+1}\right\}$ of G. Write $X=V\left(K_{k r}\right)$. Thus, we get

$$
\operatorname{sun}(G-X)=2 k r+1=2|X|+1>2|X|
$$

According to Theorem 1, G has no $P_{\geq 3}$-factor.

$3 \quad P_{\geq 3}$-factor covered graphs

Theorem 4. A k-connected graph G with n vertices is a $P_{\geq 3}$-factor covered graph if G satisfies

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n+2}{3}
$$

for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k-1}\right\}$ of G, where $k \geq 1$ and $n \geq 4 k+2$ are two integers.

Proof. Assume that G is not a $P_{\geq 3}$-factor covered graph. According to Theorem 2, we have

$$
\begin{equation*}
\operatorname{sun}(G-X) \geq 2|X|-\varepsilon(X)+1 \tag{1}
\end{equation*}
$$

for some vertex subset X of G.
In what follows, we consider two cases by the value of $i(G-X)$.
Case 1. $i(G-X) \geq 2 k-1$.
Let $\left\{v_{1}, v_{2}, \cdots, v_{2 k-1}\right\} \subseteq I(G-X)$. by the degree condition of Theorem 4 , we derive

$$
\begin{equation*}
|X| \geq \max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \cdots, d_{G}\left(v_{2 k-1}\right)\right\} \geq \frac{n+2}{3} \tag{2}
\end{equation*}
$$

Using (1), (2) and $\varepsilon(X) \leq 2$, we obtain

$$
\begin{aligned}
n & \geq|X|+\operatorname{sun}(G-X) \geq|X|+2|X|-\varepsilon(X)+1 \\
& \geq 3|X|-1 \geq 3 \cdot \frac{n+2}{3}-1=n+1
\end{aligned}
$$

which is a contradiction.
Case 2. $i(G-X) \leq 2 k-2$.
Claim 1. $|X| \geq k$.
Proof. Assume that $|X| \leq k-1$. Then $G-X$ is connected since G is k-connected. Hence, we have $c(G-X)=1$.

If $|X|=0$, then $\varepsilon(X)=0$. It follows from (1) that

$$
1=2|X|+1=2|X|-\varepsilon(X)+1 \leq \operatorname{sun}(G-X) \leq c(G-X)=1
$$

Thus, we admit $\operatorname{sun}(G)=\operatorname{sun}(G-X)=1$. Note that $n \geq 4 k+2$. Therefore, G is a big sun of order n. Let R be the factor-critical graph of G with $|V(R)|=\frac{n}{2}$. Clearly, there exists an independent subset $\left\{v_{1}, v_{2}, \cdots, v_{2 k-1}\right\} \subseteq V(G) \backslash V(R)$ of G since $n \geq 4 k+2$, and so $d_{G}\left(v_{i}\right)=1$ for $1 \leq i \leq 2 k-1$. Thus, we obtain

$$
1=\max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \cdots, d_{G}\left(v_{2 k-1}\right)\right\} \geq \frac{n+2}{3}
$$

which contradicts $n \geq 4 k+2$.
If $|X|=1$, then $\varepsilon(X) \leq 1$. Using (1), we infer

$$
2 \leq 2|X| \leq 2|X|-\varepsilon(X)+1 \leq \operatorname{sun}(G-X) \leq c(G-X)=1
$$

which is a contradiction.
If $2 \leq|X| \leq k-1$, then $\varepsilon(X) \leq 2$. In terms of (1), we get

$$
3 \leq 2|X|-1 \leq 2|X|-\varepsilon(X)+1 \leq \operatorname{sun}(G-X) \leq c(G-X)=1
$$

which is a contradiction. Claim 1 is proved.
In light of (1), Claim 1 and $\varepsilon(X) \leq 2$, we deduce

$$
2 k-1 \leq 2|X|-1 \leq 2|X|-\varepsilon(X)+1 \leq \operatorname{sun}(G-X)
$$

which implies that $G-X$ admits at least $2 k-1$ sun components, denoted by $H_{1}, H_{2}, \cdots, H_{t}$, where $t \geq 2 k-1$. We choose $v_{i} \in V\left(H_{i}\right)$ with $d_{H_{i}} \leq 1, i=1,2, \cdots, 2 k-1$. Clearly, $\left\{v_{1}, v_{2}, \cdots, v_{2 k-1}\right\}$ is an independent set of G. According to the degree condition of Theorem 4 , we possess

$$
|X|+1 \geq \max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \cdots, d_{G}\left(v_{2 k-1}\right)\right\} \geq \frac{n+2}{3}
$$

that is,

$$
\begin{equation*}
|X| \geq \frac{n-1}{3} \tag{3}
\end{equation*}
$$

It follows from $(1),(3), \varepsilon(X) \leq 2$ and $n \geq 4 k+2$ that

$$
\begin{aligned}
n & \geq|X|+2 \cdot \operatorname{sun}(G-X)-i(G-X) \\
& \geq|X|+2(2|X|-\varepsilon(X)+1)-(2 k-2) \\
& \geq|X|+2(2|X|-1)-(2 k-2) \\
& =5|X|-2 k \\
& \geq 5 \cdot \frac{n-1}{3}-2 k \\
& =n+\frac{2 n}{3}-\frac{5}{3}-2 k \\
& \geq n+\frac{2(4 k+2)}{3}-\frac{5}{3}-2 k \\
& =n+\frac{2 k}{3}-\frac{1}{3} \\
& \geq n+\frac{2}{3}-\frac{1}{3} \\
& >n
\end{aligned}
$$

which is a contradiction. Theorem 4 is verified.
Remark 2. Next, we explain that

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n+2}{3}
$$

in Theorem 4 cannot be replaced by

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n+1}{3}
$$

Let $k \geq 1$ be an integer and r be a sufficiently large integer. Let $G=K_{k r} \vee\left((2 k r-1) K_{1}\right)$. Then G is $k r$-connected, $n=3 k r-1$ and

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\}=k r=\frac{n+1}{3}
$$

for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k-1}\right\}$ of G. Set $X=V\left(K_{k r}\right)$, and so $\varepsilon(X)=2$. Thus, we derive

$$
\operatorname{sun}(G-X)=2 k r-1=2|X|-\varepsilon(X)+1>2|X|-\varepsilon(X)
$$

In view of Theorem $2, G$ is not a $P_{\geq 3}$-factor covered graph.

$4 \quad P_{\geq 3}$-factor deleted graphs

Theorem 5. $A(k+1)$-connected graph G with n vertices is a $P_{\geq 3}$-factor deleted graph if G satisfies

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n}{3}
$$

for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k-1}\right\}$ of G, where $k \geq 1$ and $n \geq 4 k+2$ are two integers.

Proof. For any $e \in E(G)$, let $G^{\prime}=G-e$. It suffices to prove that G^{\prime} has a $P_{\geq 3}$-factor. We assume that G^{\prime} has no $P_{\geq 3}$-factor. Then by Theorem 1, we acquire

$$
\begin{equation*}
\operatorname{sun}\left(G^{\prime}-X\right) \geq 2|X|+1 \tag{1}
\end{equation*}
$$

for some $X \subseteq V(G)$.
We shall discuss the following two cases by the value of $|X|$.
Case 1. $|X| \leq k-1$.
Note that $G^{\prime}=G-e$ and G is $(k+1)$-connected. Then G^{\prime} is k-connected. Hence, $G^{\prime}-X$ is connected, namely, $c\left(G^{\prime}-X\right)=1$.

If $1 \leq|X| \leq k-1$, then from (1), we get

$$
3 \leq 2|X|+1 \leq \operatorname{sun}\left(G^{\prime}-X\right) \leq c\left(G^{\prime}-X\right)=1
$$

which is a contradiction.
If $|X|=0$, then by (1), we deduce

$$
1=2|X|+1 \leq \operatorname{sun}\left(G^{\prime}-X\right) \leq c\left(G^{\prime}-X\right)=1
$$

which implies that G^{\prime} is a big sun since $n \geq 4 k+2$. Let R be the factor-critical graph of G with $|V(R)|=\frac{n}{2}$. Then $d_{G^{\prime}}\left(v_{i}\right)=1$ for $v_{i} \in V\left(G^{\prime}\right) \backslash V(R)$. Combining this with $G^{\prime}=G-e$ and $n \geq 4 k+2$, there exists an independent set $\left\{v_{1}, v_{2}, \cdots, v_{2 k-1}\right\} \subseteq V(G) \backslash V(R)$. Thus, we admit

$$
1 \geq \max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \cdots, d_{G}\left(v_{2 k-1}\right)\right\} \geq \frac{n}{3}
$$

and so $n \leq 3$, which contradicts $n \geq 4 k+2$.
Case 2. $|X| \geq k$.
Subcase 2.1. $i(G-X) \leq 2 k-2$.
In view of (1), we have

$$
\begin{equation*}
\operatorname{sun}\left(G^{\prime}-X\right) \geq 2|X|+1 \geq 2 k+1 \tag{2}
\end{equation*}
$$

Note that $\operatorname{sun}\left(G^{\prime}-X\right) \leq \operatorname{sun}(G-X)+2$. Combining this with (2), we derive

$$
\operatorname{sun}(G-X) \geq \operatorname{sun}\left(G^{\prime}-X\right)-2 \geq(2 k+1)-2=2 k-1
$$

which implies that $G-X$ possesses at least $2 k-1$ sun components, denoted by $H_{1}, H_{2}, \cdots, H_{t}$, where $t \geq 2 k-1$. Select $v_{i} \in V\left(H_{i}\right)$ with $d_{H_{i}}\left(v_{i}\right) \leq 1$ for $1 \leq i \leq 2 k-1$. Obviously, $\left\{v_{1}, v_{2}, \cdots, v_{2 k-1}\right\}$ is an independent set of G. Thus, we get

$$
|X|+1 \geq \max \left\{d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \cdots, d_{G}\left(v_{2 k-1}\right)\right\} \geq \frac{n}{3}
$$

namely,

$$
\begin{equation*}
|X| \geq \frac{n}{3}-1 \tag{3}
\end{equation*}
$$

Note that $i\left(G^{\prime}-X\right) \leq i(G-X)+2$. Combining this with (1), (3) and $n \geq 4 k+2$, we have

$$
\begin{aligned}
n & \geq|X|+2 \cdot \operatorname{sun}\left(G^{\prime}-X\right)-i\left(G^{\prime}-X\right) \\
& \geq|X|+2(2|X|+1)-i(G-X)-2 \\
& =5|X|-i(G-X) \\
& \geq 5 \cdot\left(\frac{n}{3}-1\right)-(2 k-2) \\
& =n+\frac{2 n}{3}-2 k+\frac{1}{3} \\
& \geq n+\frac{2(4 k+2)}{3}-2 k+\frac{1}{3} \\
& =n+\frac{2 k}{3}+\frac{5}{3} \\
& >n
\end{aligned}
$$

which is a contradiction.
Subcase 2.2. $i(G-X) \geq 2 k-1$.
In this case, there exist at least $2 k-1$ isolated vertices $z_{1}, z_{2}, \cdots, z_{2 k-1}$ in $G-X$, and so $d_{G-X}\left(z_{i}\right)=0$ for $1 \leq i \leq 2 k-1$. Thus, we derive

$$
d_{G}\left(z_{i}\right) \leq d_{G-X}\left(z_{i}\right)+|X|=|X|
$$

for $1 \leq i \leq 2 k-1$. In light of the degree condition of Theorem 5 , we get

$$
\max \left\{d_{G}\left(z_{1}\right), d_{G}\left(z_{2}\right), \cdots, d_{G}\left(z_{2 k-1}\right)\right\} \geq \frac{n}{3}
$$

and so

$$
\begin{equation*}
|X| \geq \max \left\{d_{G}\left(z_{1}\right), d_{G}\left(z_{2}\right), \cdots, d_{G}\left(z_{2 k-1}\right)\right\} \geq \frac{n}{3} \tag{4}
\end{equation*}
$$

According to (1) and (4), we infer

$$
n \geq|X|+\operatorname{sun}\left(G^{\prime}-X\right) \geq|X|+2|X|+1=3|X|+1 \geq 3 \cdot \frac{n}{3}+1=n+1
$$

which is a contradiction. Theorem 5 is proved.
Remark 3. Next, we show that

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n}{3}
$$

in Theorem 5 cannot be replaced by

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\} \geq \frac{n-1}{3}
$$

Let $k \geq 1$ be an integer and r be a sufficiently large integer. Let $G=K_{(k+1) r} \vee((2(k+$ $1) r+1) K_{1}$). Then G is $(k+1) r$-connected, $n=3(k+1) r+1$ and

$$
\max \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right), \cdots, d_{G}\left(x_{2 k-1}\right)\right\}=(k+1) r=\frac{n-1}{3}
$$

for any independent subset $\left\{x_{1}, x_{2}, \cdots, x_{2 k-1}\right\}$ of G. For any $e \in E(G)$, let $G^{\prime}=G-e$. Write $X=V\left(K_{(k+1) r}\right)$. Thus, we get

$$
\operatorname{sun}\left(G^{\prime}-X\right)=2(k+1) r+1=2|X|+1>2|X|
$$

According to Theorem 1, G has no $P_{\geq 3}$-factor, namely, G is not $P_{\geq 3}$-factor deleted.
Acknowledgement The author would like to thank the anonymous reviewers for their careful reading and correction on this paper.

References

[1] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi, H. Matsuda, Path factors in claw-free graphs, Discrete Mathematics, 243, 195-200 (2002).
[2] Y. Egawa, M. Furuya, K. Ozeki, Sufficient conditions for the existence of a pathfactor which are related to odd components, Journal of Graph Theory, 89, 327-340 (2018).
[3] W. Gao, W. Wang, Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings, International Journal of Intelligent Systems, 36, 1133-1158 (2021).
[4] W. Gao, W. Wang, J. Guirao, The extension degree conditions for fractional factor, Acta Mathematica Sinica, English Series, 36, 305-317 (2020).
[5] H. Hua, Toughness and isolated toughness conditions for $P_{\geq 3}$-factor uniform graphs, Journal of Applied Mathematics and Computing, 66, 809-821 (2021).
[6] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, Journal of Combinatorial Theory, Series B, 88, 195-218 (2003).
[7] M. Kano, G. Y. Katona, Z. Király, Packing paths of length at least two, Discrete Mathematics, 283, 129-135 (2004).
[8] M. Kano, C. Lee, K. Suzuki, Path and cycle factors of cubic bipartite graphs, Discussiones Mathematicae Graph Theory, 28, 551-556 (2008).
[9] M. Kano, H. Lu, Q. Yu, Component factors with large components in graphs, Applied Mathematics Letters, 23, 385-389 (2010).
[10] A. Kelmans, Packing 3-vertex paths in claw-free graphs and related topics, Discrete Applied Mathematics, 159, 112-127 (2011).
[11] X. Lv, A degree condition for fractional (g, f, n)-critical covered graphs, AIMS Mathematics, 5, 872-878 (2020).
[12] H. Wang, Path factors of bipartite graphs, Journal of Graph Theory, 18, 161-167 (1994).
[13] S. Wang, W. Zhang, On k-orthogonal factorizations in networks, RAIROOperations Research, 55, 969-977 (2021).
[14] S. Wang, W. Zhang, Research on fractional critical covered graphs, Problems of Information Transmission, 56, 270-277 (2020).
[15] Y. Yuan, R. Hao, A neighborhood union condition for fractional ID- $[a, b]$-factorcritical graphs, Acta Mathematicae Applicatae Sinica, English Series, 34, 775-781 (2018).
[16] H. Zhang, S. Zhou, Characterizations for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor covered graphs, Discrete Mathematics, 309, 2067-2076 (2009).
[17] S. ZHOU, A neighborhood union condition for fractional (a, b, k)-critical covered graphs, Discrete Applied Mathematics, 323, 343-348 (2022).
[18] S. Zhou, Some results about component factors in graphs, RAIRO-Operations Research, 53, 723-730 (2019).
[19] S. Zhou, Binding numbers and restricted fractional (g, f)-factors in graphs, Discrete Applied Mathematics, 305, 350-356 (2021).
[20] S. Zhou, Remarks on path factors in graphs, RAIRO-Operations Research, 54, 18271834 (2020).
[21] S. Zhou, Some results on path-factor critical avoidable graphs, Discussiones Mathematicae Graph Theory, 43, 233-244 (2023).
[22] S. Zhou, Q. Bian, Q. Pan, Path factors in subgraphs, Discrete Applied Mathematics, 319, 183-191 (2022).
[23] S. Zhou, Q. Bian, Z. Sun, Two sufficient conditions for component factors in graphs, Discussiones Mathematicae Graph Theory, DOI: 10.7151/dmgt.2401.
[24] S. Zhou, H. Liu, Y. Xu, A note on fractional ID-[$a, b]$-factor-critical covered graphs, Discrete Applied Mathematics, 319, 511-516 (2022).
[25] S. Zhou, Z. Sun, H. Liu, Isolated toughness and path-factor uniform graphs, RAIRO-Operations Research, 55, 1279-1290 (2021).
[26] S. Zhou, Z. Sun, Q. Pan, A sufficient condition for the existence of restricted fractional (g, f)-factors in graphs, Problems of Information Transmission, 56, 332344 (2020).
[27] S. Zhou, Y. Xu, Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs, Information Processing Letters, 152, 105838 (2019).
[28] S. Zhou, F. Yang, L. Xu, Two sufficient conditions for the existence of path factors in graphs, Scientia Iranica, 26, 3510-3514 (2019).
[29] S. Zhou, T. Zhang, Z. Xu, Subgraphs with orthogonal factorizations in graphs, Discrete Applied Mathematics, 286, 29-34 (2020).

Received: 15.05.2021
Revised: 18.06.2021
Accepted: 04.07.2021
School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China

E-mail: zsz_cumt@163.com

