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Degree conditions and path factors with inclusion or exclusion properties
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Abstract

A spanning subgraph F of a graph G is called a path factor if every component of F
is a path. For an integer d ≥ 2, a P≥d-factor of a graphG is a spanning subgraph F such
that every component is isomorphic to a path of k vertices for some k ≥ d. A graph G
is called a P≥d-factor covered graph if for any e ∈ E(G), G has a P≥d-factor covering e.
A graph G is called a P≥d-factor deleted graph if for any e ∈ E(G), G has a P≥d-factor
excluding e. In this article, we verify that (i) a k-connected graph G with at least n
vertices admits a P≥3-factor if G satisfies max{dG(x1), dG(x2), · · · , dG(x2k+1)} ≥ n

3

for any independent subset {x1, x2, · · · , x2k+1} of G, where k ≥ 1 and n ≥ 4k + 4 are
two integers; (ii) a k-connected graph G with at least n vertices is a P≥3-factor covered
graph if G satisfies max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n+2

3
for any independent

subset {x1, x2, · · · , x2k−1} of G, where k ≥ 1 and n ≥ 4k + 2 are two integers; (iii)
a (k + 1)-connected graph G with at least n vertices is a P≥3-factor deleted graph
if G satisfies max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n

3
for any independent subset

{x1, x2, · · · , x2k−1} of G, where k ≥ 1 and n ≥ 4k + 2 are two integers.
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1 Introduction

In this article we deal with finite, undirected and simple graphs. We denote by G =
(V (G), E(G)) a graph, where V (G) denotes the vertex set of G and E(G) denotes the
edge set of G. For x ∈ V (G), the degree of x in G, denoted by dG(x), is the number of
vertices adjacent to x in G. For any X ⊆ V (G), we denote by G−X the subgraph derived
from G by removing vertices in X together with the edges incident to vertices in X. For
E′ ⊆ E(G), G − E′ denotes the subgraph derived from G by removing E′. In particular,
we write G − x = G − {x} for any x ∈ V (G) and G − e = G − {e} for any e ∈ E(G). A
vertex subset X of G is called independent if no two vertices in X are adjacent to each
other. Let i(G) and c(G) denote the number of isolated vertices and connected components
of G, respectively. The isolated vertex set of G is denoted by I(G), and so i(G) = |I(G)|.
We denote by Kn the complete graph of order n, and by Pn the path of order n. For two
graphs G1 and G2, we denote by G1 ∨G2 the join of G1 and G2.

A spanning subgraph F (i.e. V (F ) = V (G)) of a graph G is called a 1-factor if dF (x) = 1
holds for all x ∈ V (G). A graph H is factor-critical if every induced subgraph of order
|V (H)| − 1 has a 1-factor. A graph R is called a sun if R = K1, R = K2 or R is the corona
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Figure 1: A factor-critical graph H and the sun R obtained from H.

of a factor-critical graph H with at least three vertices, namely, R is derived from H by
adding a new vertex u = u(v) together with a new edge uv for each v ∈ V (H) to H (Figure
1, which was shown by Kano, Lu and Yu [9]). Obviously, dR(u) = 1. A sun of order n
with n ≥ 6 is called a big sun. A component of a graph G is called a sun component if it
is isomorphic to a sun. Let sun(G) denote the number of sun components of G. In fact,
i(G) ≤ sun(G) ≤ c(G).

A spanning subgraph F of a graph G is called a path factor if every component of F is
a path. For an integer d ≥ 2, a P≥d-factor of a graph G is a spanning subgraph F such that
every component is isomorphic to a path of k vertices for some k ≥ d. A graph G is called
a P≥d-factor covered graph if for any e ∈ E(G), G has a P≥d-factor covering e. A graph G
is called a P≥d-factor deleted graph if for any e ∈ E(G), G has a P≥d-factor excluding e.

Wang [12] presented a criterion for a bipartite graph admitting a P≥3-factor. Kaneko [6]
established a criterion for a graph to have a P≥3-factor. Kano, Katona and Király [7] posed
a shorter proof of Kaneko’s result. Ando, Egawa, Kaneko, Kawarabayshi and Matsuda [1]
verified that a claw-free graph with minimum degree at least d admitted a P≥d+1-factor.
Zhang and Zhou [16] raised a characterization for a P≥3-factor covered graph. Zhou [18]
derived a sufficient condition for the existence of a P≥3-factor covered graph. Zhou [20, 21],
Gao, Wang and Cheng [3] gave some sufficient conditions for graphs to be P≥3-factor deleted
graphs. Zhou, Sun and Liu [25], Hua [5], Zhou, Yang and Xu [28] got some results on the
existence of P≥3-factor graphs with given properties. Some other results on path factors
can be referred to Kano, Lee and Suzuki [8], Kelmans [10], Egawa, Furuya and Ozeki [2],
Zhou, Bian and Pan [22], Zhou, Bian and Sun [23]. Some relationships between degree
conditions and graph factors were derived by Zhou, Xu and Sun [27], Zhou, Liu and Xu
[24], Zhou, Zhang and Xu [29], Gao, Wang and Guirao [4], Wang and Zhang [13], Lv [11],
Zhou [17], Zhou, Sun and Pan [26]. Some other results on graph factors can be found in
Wang and Zhang [14], Yuan and Hao [15], Zhou [19].

The following results on path factors and path factor covered graphs are known, which
play a key role in the proof of our main theorems.

Theorem 1 ([6]). A graph G admits a P≥3-factor if and only if

sun(G−X) ≤ 2|X|

for all X ⊆ V (G).
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Theorem 2 ([16]). A connected graph G is a P≥3-factor covered graph if and only if

sun(G−X) ≤ 2|X| − ε(X)

for all X ⊆ V (G), where ε(X) is defined by

ε(X) =


2, if X is not an independent set;
1, if X is a nonempty independent set, and G−X admits

a non− sun component;
0, otherwise.

In this article, we study P≥3-factors of graphs, P≥3-factor covered graphs and P≥3-
factor deleted graphs. Then we establish the relationship between degree conditions and
P≥3-factors of graphs (or P≥3-factor covered graphs, or P≥3-factor deleted graphs), which
are shown in Sections 2–4.

2 P≥3-factors in graphs

Next, we pose the main theorem in this section.

Theorem 3. A k-connected graph G with n vertices admits a P≥3-factor if G satisfies

max{dG(x1), dG(x2), · · · , dG(x2k+1)} ≥ n

3

for any independent subset {x1, x2, · · · , x2k+1} of G, where k ≥ 1 and n ≥ 4k + 4 are two
integers.

Proof. Suppose, to the contrary, that G has no P≥3-factor. Then it follows from Theorem
1 that there exists some vertex subset X of G such that

sun(G−X) ≥ 2|X|+ 1. (1)

Claim 1. |X| ≥ k.
Proof. Let |X| ≤ k−1. Then G−X is connected since G is k-connected, namely, c(G−X) =
1. Combining this with (1), we derive

2|X|+ 1 ≤ sun(G−X) ≤ c(G−X) = 1.

Thus, we get |X| = 0 and sun(G−X) = 1. Combining this with n ≥ 4k+4, we see that G
is a big sun. We denote by R the factor-critical graph of G with |V (R)| = 1

2n. Obviously,
there exists an independent set {x1, x2, · · · , x2k+1} ⊆ V (G) \ V (R) since n ≥ 4k + 4, and
so dG(xi) = 1 for 1 ≤ i ≤ 2k + 1. By the degree condition of Theorem 3, we admit

n

3
≤ max{dG(x1), dG(x2), · · · , dG(x2k+1)} = 1,

and so n ≤ 3, which contradicts n ≥ 4k + 4 ≥ 8 since k ≥ 1. Claim 1 is verified. 2

Claim 2. i(G−X) ≤ 2k.
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Proof. Assume that i(G−X) ≥ 2k+1, which implies that there exist at least 2k+1 isolated
vertices z1, z2, · · · , z2k+1 in G − X. And so, dG−X(zi) = 0 for 1 ≤ i ≤ 2k + 1. Thus, we
deduce

dG(zi) ≤ dG−X(zi) + |X| = |X| (2)

for 1 ≤ i ≤ 2k + 1.

Combining the degree condition of Theorem 3 with an independent subset {z1, z2, · · · , z2k+1}
of G, we admit

max{dG(z1), dG(z2), · · · , dG(z2k+1)} ≥ n

3
. (3)

It follows from (2) and (3) that

|X| ≥ max{dG(z1), dG(z2), · · · , dG(z2k+1)} ≥ n

3
. (4)

In terms of (1) and (4), we get

n ≥ |X|+ sun(G−X) ≥ |X|+ 2|X|+ 1 = 3|X|+ 1 ≥ 3 · n
3
+ 1 = n+ 1,

which is a contradiction. This completes the proof of Claim 2. 2

In view of (1) and Claim 1, we have

sun(G−X) ≥ 2|X|+ 1 ≥ 2k + 1. (5)

It follows from (5) that there exist t sun components inG−X, denoted byH1, H2, · · · , Ht,
where t ≥ 2k+1. Select vi ∈ V (Hi) with dHi

(vi) ≤ 1, i = 1, 2, · · · , 2k+1. It is obvious that
{v1, v2, · · · , v2k+1} is an independent set of G. Combining this with the degree condition
of Theorem 3, we get

max{dG(v1), dG(v2), · · · , dG(v2k+1)} ≥ n

3
. (6)

Without loss of generality, assume dG(v1) ≥ n
3 by (6). Hence, we deduce

dG[X](v1) = dG(v1)− dH1
(v1) ≥

n

3
− 1,

where G[X] denotes the subgraph induced by X in G, and so

|X| ≥ dG[X](v1) ≥
n

3
− 1. (7)
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In terms of (1), (7), Claim 2, k ≥ 1 and n ≥ 4k + 4, we derive

n ≥ |X|+ 2 · sun(G−X)− i(G−X)

≥ |X|+ 2(2|X|+ 1)− 2k

= 5|X| − 2k + 2

≥ 5
(n
3
− 1

)
− 2k + 2

= n+
2n

3
− 2k − 3

≥ n+
2(4k + 4)

3
− 2k − 3

= n+
2k

3
− 1

3

≥ n+
1

3
> n,

which is a contradiction. The proof of Theorem 3 is complete. 2

Remark 1. Next, we claim that

max{dG(x1), dG(x2), · · · , dG(x2k+1)} ≥ n

3

in Theorem 3 cannot be replaced by

max{dG(x1), dG(x2), · · · , dG(x2k+1)} ≥ n− 1

3
.

Let k ≥ 1 be an integer and r be a sufficiently large integer. Let G = Kkr∨((2kr+1)K1).
Then we see that G is kr-connected, n = 3kr + 1 and

max{dG(x1), dG(x2), · · · , dG(x2k+1)} = kr =
n− 1

3

for any independent subset {x1, x2, · · · , x2k+1} of G. Write X = V (Kkr). Thus, we get

sun(G−X) = 2kr + 1 = 2|X|+ 1 > 2|X|.

According to Theorem 1, G has no P≥3-factor.

3 P≥3-factor covered graphs

Theorem 4. A k-connected graph G with n vertices is a P≥3-factor covered graph if G
satisfies

max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n+ 2

3

for any independent subset {x1, x2, · · · , x2k−1} of G, where k ≥ 1 and n ≥ 4k + 2 are two
integers.
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Proof. Assume that G is not a P≥3-factor covered graph. According to Theorem 2, we have

sun(G−X) ≥ 2|X| − ε(X) + 1 (1)

for some vertex subset X of G.
In what follows, we consider two cases by the value of i(G−X).

Case 1. i(G−X) ≥ 2k − 1.
Let {v1, v2, · · · , v2k−1} ⊆ I(G−X). by the degree condition of Theorem 4, we derive

|X| ≥ max{dG(v1), dG(v2), · · · , dG(v2k−1)} ≥ n+ 2

3
. (2)

Using (1), (2) and ε(X) ≤ 2, we obtain

n ≥ |X|+ sun(G−X) ≥ |X|+ 2|X| − ε(X) + 1

≥ 3|X| − 1 ≥ 3 · n+ 2

3
− 1 = n+ 1,

which is a contradiction.
Case 2. i(G−X) ≤ 2k − 2.
Claim 1. |X| ≥ k.
Proof. Assume that |X| ≤ k − 1. Then G−X is connected since G is k-connected. Hence,
we have c(G−X) = 1.

If |X| = 0, then ε(X) = 0. It follows from (1) that

1 = 2|X|+ 1 = 2|X| − ε(X) + 1 ≤ sun(G−X) ≤ c(G−X) = 1.

Thus, we admit sun(G) = sun(G −X) = 1. Note that n ≥ 4k + 2. Therefore, G is a big
sun of order n. Let R be the factor-critical graph of G with |V (R)| = n

2 . Clearly, there
exists an independent subset {v1, v2, · · · , v2k−1} ⊆ V (G) \V (R) of G since n ≥ 4k+2, and
so dG(vi) = 1 for 1 ≤ i ≤ 2k − 1. Thus, we obtain

1 = max{dG(v1), dG(v2), · · · , dG(v2k−1)} ≥ n+ 2

3
,

which contradicts n ≥ 4k + 2.
If |X| = 1, then ε(X) ≤ 1. Using (1), we infer

2 ≤ 2|X| ≤ 2|X| − ε(X) + 1 ≤ sun(G−X) ≤ c(G−X) = 1,

which is a contradiction.
If 2 ≤ |X| ≤ k − 1, then ε(X) ≤ 2. In terms of (1), we get

3 ≤ 2|X| − 1 ≤ 2|X| − ε(X) + 1 ≤ sun(G−X) ≤ c(G−X) = 1,

which is a contradiction. Claim 1 is proved. 2

In light of (1), Claim 1 and ε(X) ≤ 2, we deduce

2k − 1 ≤ 2|X| − 1 ≤ 2|X| − ε(X) + 1 ≤ sun(G−X),
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which implies that G−X admits at least 2k−1 sun components, denoted byH1, H2, · · · , Ht,
where t ≥ 2k − 1. We choose vi ∈ V (Hi) with dHi ≤ 1, i = 1, 2, · · · , 2k − 1. Clearly,
{v1, v2, · · · , v2k−1} is an independent set of G. According to the degree condition of Theo-
rem 4, we possess

|X|+ 1 ≥ max{dG(v1), dG(v2), · · · , dG(v2k−1)} ≥ n+ 2

3
,

that is,

|X| ≥ n− 1

3
. (3)

It follows from (1), (3), ε(X) ≤ 2 and n ≥ 4k + 2 that

n ≥ |X|+ 2 · sun(G−X)− i(G−X)

≥ |X|+ 2(2|X| − ε(X) + 1)− (2k − 2)

≥ |X|+ 2(2|X| − 1)− (2k − 2)

= 5|X| − 2k

≥ 5 · n− 1

3
− 2k

= n+
2n

3
− 5

3
− 2k

≥ n+
2(4k + 2)

3
− 5

3
− 2k

= n+
2k

3
− 1

3

≥ n+
2

3
− 1

3
> n,

which is a contradiction. Theorem 4 is verified. 2

Remark 2. Next, we explain that

max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n+ 2

3

in Theorem 4 cannot be replaced by

max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n+ 1

3
.

Let k ≥ 1 be an integer and r be a sufficiently large integer. Let G = Kkr∨((2kr−1)K1).
Then G is kr-connected, n = 3kr − 1 and

max{dG(x1), dG(x2), · · · , dG(x2k−1)} = kr =
n+ 1

3

for any independent subset {x1, x2, · · · , x2k−1} of G. Set X = V (Kkr), and so ε(X) = 2.
Thus, we derive

sun(G−X) = 2kr − 1 = 2|X| − ε(X) + 1 > 2|X| − ε(X).

In view of Theorem 2, G is not a P≥3-factor covered graph.
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4 P≥3-factor deleted graphs

Theorem 5. A (k + 1)-connected graph G with n vertices is a P≥3-factor deleted graph if
G satisfies

max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n

3

for any independent subset {x1, x2, · · · , x2k−1} of G, where k ≥ 1 and n ≥ 4k + 2 are two
integers.

Proof. For any e ∈ E(G), let G′ = G− e. It suffices to prove that G′ has a P≥3-factor. We
assume that G′ has no P≥3-factor. Then by Theorem 1, we acquire

sun(G′ −X) ≥ 2|X|+ 1 (1)

for some X ⊆ V (G).
We shall discuss the following two cases by the value of |X|.

Case 1. |X| ≤ k − 1.
Note that G′ = G − e and G is (k + 1)-connected. Then G′ is k-connected. Hence,

G′ −X is connected, namely, c(G′ −X) = 1.
If 1 ≤ |X| ≤ k − 1, then from (1), we get

3 ≤ 2|X|+ 1 ≤ sun(G′ −X) ≤ c(G′ −X) = 1,

which is a contradiction.
If |X| = 0, then by (1), we deduce

1 = 2|X|+ 1 ≤ sun(G′ −X) ≤ c(G′ −X) = 1,

which implies that G′ is a big sun since n ≥ 4k+2. Let R be the factor-critical graph of G
with |V (R)| = n

2 . Then dG′(vi) = 1 for vi ∈ V (G′)\V (R). Combining this with G′ = G−e
and n ≥ 4k + 2, there exists an independent set {v1, v2, · · · , v2k−1} ⊆ V (G) \ V (R). Thus,
we admit

1 ≥ max{dG(v1), dG(v2), · · · , dG(v2k−1)} ≥ n

3
,

and so n ≤ 3, which contradicts n ≥ 4k + 2.
Case 2. |X| ≥ k.
Subcase 2.1. i(G−X) ≤ 2k − 2.

In view of (1), we have

sun(G′ −X) ≥ 2|X|+ 1 ≥ 2k + 1. (2)

Note that sun(G′ −X) ≤ sun(G−X) + 2. Combining this with (2), we derive

sun(G−X) ≥ sun(G′ −X)− 2 ≥ (2k + 1)− 2 = 2k − 1,

which implies thatG−X possesses at least 2k−1 sun components, denoted byH1, H2, · · · , Ht,
where t ≥ 2k − 1. Select vi ∈ V (Hi) with dHi(vi) ≤ 1 for 1 ≤ i ≤ 2k − 1. Obviously,
{v1, v2, · · · , v2k−1} is an independent set of G. Thus, we get

|X|+ 1 ≥ max{dG(v1), dG(v2), · · · , dG(v2k−1)} ≥ n

3
,
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namely,

|X| ≥ n

3
− 1. (3)

Note that i(G′ −X) ≤ i(G−X) + 2. Combining this with (1), (3) and n ≥ 4k + 2, we
have

n ≥ |X|+ 2 · sun(G′ −X)− i(G′ −X)

≥ |X|+ 2(2|X|+ 1)− i(G−X)− 2

= 5|X| − i(G−X)

≥ 5 ·
(n
3
− 1

)
− (2k − 2)

= n+
2n

3
− 2k +

1

3

≥ n+
2(4k + 2)

3
− 2k +

1

3

= n+
2k

3
+

5

3
> n,

which is a contradiction.
Subcase 2.2. i(G−X) ≥ 2k − 1.

In this case, there exist at least 2k − 1 isolated vertices z1, z2, · · · , z2k−1 in G−X, and
so dG−X(zi) = 0 for 1 ≤ i ≤ 2k − 1. Thus, we derive

dG(zi) ≤ dG−X(zi) + |X| = |X|

for 1 ≤ i ≤ 2k − 1. In light of the degree condition of Theorem 5, we get

max{dG(z1), dG(z2), · · · , dG(z2k−1)} ≥ n

3
,

and so

|X| ≥ max{dG(z1), dG(z2), · · · , dG(z2k−1)} ≥ n

3
. (4)

According to (1) and (4), we infer

n ≥ |X|+ sun(G′ −X) ≥ |X|+ 2|X|+ 1 = 3|X|+ 1 ≥ 3 · n
3
+ 1 = n+ 1,

which is a contradiction. Theorem 5 is proved. 2

Remark 3. Next, we show that

max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n

3

in Theorem 5 cannot be replaced by

max{dG(x1), dG(x2), · · · , dG(x2k−1)} ≥ n− 1

3
.
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Let k ≥ 1 be an integer and r be a sufficiently large integer. Let G = K(k+1)r ∨ ((2(k+
1)r + 1)K1). Then G is (k + 1)r-connected, n = 3(k + 1)r + 1 and

max{dG(x1), dG(x2), · · · , dG(x2k−1)} = (k + 1)r =
n− 1

3

for any independent subset {x1, x2, · · · , x2k−1} of G. For any e ∈ E(G), let G′ = G − e.
Write X = V (K(k+1)r). Thus, we get

sun(G′ −X) = 2(k + 1)r + 1 = 2|X|+ 1 > 2|X|.

According to Theorem 1, G has no P≥3-factor, namely, G is not P≥3-factor deleted.
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