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A family of non-flat ternary cyclotomic polynomials
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Abstract

Let ®,(z) be the n-th cyclotomic polynomial, p < ¢ < r be odd primes, and z be
an integer such that zr = +1 (mod pq). There have been extensive studies about the
flatness of ternary cyclotomic polynomials @, (x) for special cases of z. We present
some classes of non-flat ternary cyclotomic polynomials for the general cases of z.
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1 Introduction

Let
. é(n)
D, (x) = H (xr—en )= Z a(n,m)z™
1<k<n m=0

(k,n)=1

be the n-th cyclotomic polynomial, where ¢ is Euler’s function. The coefficients a(n,m)
are known to be integral. We define the height of ®,,(x) to be

A(n) :== max{|a(n,m)| : 0 <m < ¢(n)}.

If A(n) = 1, then we say that ®,(x) is flat. By using basic properties of cyclotomic
polynomials, it is easy to see that in the investigation about the coefficients of @, (x) we
can reduce our enquiry to the case when n is odd and square-free.

Throughout the paper, the letters p, ¢ and r will always mean odd primes with p < ¢ < r.
It follows from ®,(z) =1+ x + 2% + - - + 2P~ and the following proposition that if n has
at most two distinct odd prime factors, then @, (z) is flat.

Proposition 1. ([6, 10]) Let s and t be the unique positive integers such that pg+1 = sp+tq.
Then

s—1t—1 qg—s—1p—t—1

— up+vq up+vqg+1

D,y (z) = E E x - E E x .
u=0v=0 u=0 v=0

Also, for 0 <m < (p—1)(¢ — 1), we have

(1) a(pg,m) =1 if and only if m =up+vq with0 <u<s—1and 0 <v <t—1;

(2) a(pg,m) = —1 if and only if m = up+vg+1 with 0 < u < ¢g—s—1 and
0<v<p—t—1;

(3) a(pg,m) = 0 otherwise.
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In 1883, Migotti [8] noted that a(3-5-7,7) = —2. Thus the easiest case where we can
expect non-trivial behavior of the coefficients of ®,,(z) is the ternary case n = pgr. In 2006,
Bachman [1] established the existence of an infinite family of flat ternary cyclotomic poly-
nomials by showing that A(pgr) =1 when p > 5, ¢ = —1 (mod p) and r =1 (mod pq). In
2007, Kaplan [5] proved the following technical proposition, relating coefficients of @4, (2)
to the coefficients of ®,q(x).

Proposition 2. Let m > 0 be an integer and f(i) the unique value 0 < f(i) < pg—1 such
that

rf(i)+i=m (mod pq). (1.1)
Set a*(pq,j) = a(pq,j), if rj < m; and O otherwise. Then
p—1 p—1
a(pqr,m) =Y a*(pg, f(i)) = > a*(pg, f(q+ 5))-
i=0 3=0

The investigation of the coefficients of ®,,.(x) has a long history, see Sanna [9] for a
recent survey on this topic. Nevertheless, it is still an open problem to give a complete clas-
sification of flat ternary cyclotomic polynomials. Broadhurst once proposed the following
conjecture about flat ternary cyclotoic polynomials.

Conjecture 1. Let p < q < r be odd primes with w the unique integer 0 < w < %
satisfying r = +w (mod pgq).
If w =1, then we say that [p,q,7] is of Type 1.
Ifw>1,¢=1 (mod pw) and p=1 (mod w), then we say that [p,q,r] is of Type 2.
Ifw>p,q¢q>pp-1), g==+1 (mod p) and w = +1 (mod p), and in the case where
w=1 (mod p) we have wp fqg+ 1 and wp Jg — 1, then we say that [p,q,r] is of Type 3.
Then A(pqr) = 1 if and only if [p,q,r] is of Type 1 or 2, or [p,q,r] is of Type 3 and
D, (2°)/Ppqy(2) is flat, where s is the smallest positive integer such that s =1 (mod p) and
s = +r (mod pq).

Let p < ¢ < r be odd primes such that
zr = +1 (mod pq),

where z is a positive integer. For some fixed values of z, such as 1 < z < 8, the flatness
of ®p4-(x) has been studied in literature [1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 15, 14, 16]. In this
paper, we study the flatness of ®,,,(z) and establish the following result, without fixing z.

Theorem 1. Let p < g < r be odd primes such that ¢ = £ (mod p) and zr = 1 (mod pgq),
where 1 < £ <p—1 and 4 < 2z < p are integers.
(1) If p=¢ (mod 2), then a(pgr,pr +qr —br+p+qg+r—1— p7_€) > 2.
(2) If p=—¢ (mod 2) and £ = —1 (mod z), then a(pgr,qr +p+q—1— %) < =2.
(3) If p= —¢ (mod z) and £ # —1 (mod z), then a(pgr,qr +p+q+r—1— 2£) > 2,

) =
Recall that Kaplan [5] showed that for any prime s > ¢ such that s = +r (mod pq),
A(pgr) = A(pgs). Then, as an immediately consequence of Theorem 1, we obtain

Corollary 1. Letp < g < r be odd primes such that ¢ = £ (mod p) and zr = £1 (mod pgq),
where 1 < £ < p—1 and 4 < 2z < p are integers. If p = £¢ (mod z), then ®pq-(x) is
non-flat.
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2 Preliminaries

We now provide bounds for the values s and ¢ in the equation pg+ 1 = sp + tq used in the
proof of Theorem 1.

Lemma 1. Let p < q be odd primes with q = kp+ £ for some k>1and1 <{ <p—1. Let
s, t be unique integers 0 < s < q, 0 <t < p such that pg+ 1 = sp+tq. Then
(1)2<t<p—2;
2)k+1<s<g—k-2

Proof. (1) Note that t =1 if and only if ¢ = 1 (mod p), and t = p—1 if and only if ¢ = —1

(mod p). Then, we have 2 <t <p— 2.
(2) Tt follows from ¢ > 2 and k > 1 that

thkp+ 0t —kp—2p—1
> kp—p+lt—(p+1)
> ft—(p+1).

plg—k—2)—ps

On noting that ¢t = 1 (mod p), we obtain from ¢ > 1 that ¢t > p 4 1, implying that
s<q—k-—2.

Since t < p — 2, we deduce that sp = (p—t)g+1>2¢+1>kp+p. So s > k+ 1. This
completes the proof of Lemma 1. 0

3 Proof of Theorem 1

Put ¢ = kp + ¢, where k is a positive integer.
(1) Let p' = pz;f and m =pr+qgr —lr+p+q+r—1—p'. By substituting the value of
m into congruence rf(i) + ¢ = m (mod pq), we have

f@)=zp+(z+1)g—2z+1—2i (mod pq).
It follows from 4 < 2z < p that

0< flg+p—1) < f(0) <pg.

So f(i)=zp+ (2+1)g— 2+ 1 — zi, where i € [0,p — 1] U [¢,¢ + p — 1]. Then one readily
verifies that

m < rflgtp-2-p)<---<rflg) <rf(p—1)<--- <rf(0);
m > rflg+p—1-p)>--->rf(g+p-1).

In view of Proposition 2, we infer that

0 ificl0,p—1U[gq+p—2-7p';
a(pg, f(i)) ifielg+p—1—p,q+p—1],

a*(pq, f(i)) = {
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and thus
p—1

a(pgr,m) = — > alpg, f(g+ 7). (3.1)

—-p

Jj=p—1

On noting that f(¢+p—1)=¢+1and f(¢g+p—1—p") = (k+ 1)p+ 1, we obtain
from Lemma 1 and Proposition 1 that a(pq, f(¢+p—1)) = a(pg, f(¢+p—1—p')) = —1.
Therefore we can write (3.1) as

/

p—2
a(pgr,m) =2— Y a(pg, f(g+ 7).
Jj=p—p’
Set p—p’ < j <p-—2. It follows from Proposition 1 that the quantity a(pq, f(¢ + 7))
takes on one of three values: —1, 0 or 1. We will now show that

a(pg, f(q+J)) # 1. (3.2)

According to Proposition 1, we only have to prove that f(¢ + j) can not be written in
the form up + vq for some 0 < u < s—1and 0 < v <t —1, where s and t are the unique
positive integers such that pg + 1 = sp 4 tq. Let us suppose that

flg+i)=zp+q+1—(1+435)z=up+vq. (3.3)

Since
qg<flg+p—1)<flg+j) < flatp—1-p) <2,
we have v =0, 1.
If v = 0, then, by taking (3.3) modulo p,

(14j)z2—£¢—1=0 (mod p).

On noting that (z —1)p< (z—1)p+2—-1<(1+j)z—0—-1<zp—z—L—1< zp, we
derive a contradiction.

If v = 1, we similarly infer that (1+j)z—1 =0 (mod p). This contradicts the fact that
(z—1)p< (14 4)z—1 < zp and proves our claim (3.2). Hence a(pgr,m) > 2.

(2) Our argument here proceeds along the same lines. Let p” = %H and m =qr+p-+
g—1—p". Onnoting 4 < 2z < pand 0 < f(i) < pg — 1, it follows from congruence (1.1)
that

f@)=CE-1p+(z+1)g—¥—z— zi,

where i € [0,p—1]U]g, ¢+p—1]. Then rf(i) > m whenever i € [0,p—1]U[q,q+p—2—p"],
and rf(i) < m whenever i € [¢+p—1—p”,q+ p—1]. According to Proposition 2, we

deduce that
p—1

a(pgr,m) =— Y alpg, f(q + 7))
j=p—1-p”
In particular, we have f(¢+p—1) = (k—1)p and f(¢+p—1—p") = ¢q. By using Proposition
1 and Lemma 1, we derive that a(pq, f(¢+p—1)) = a(pq,q+p—1—p") =1, and then
p—2
a(pgr,m) = =2— > alpg, f(q+ 7).

Jj=p—p"
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In light of Proposition 1, for the purpose of proving a(pgr,m) < —2, it suffices to show
that

a(pq, f(g+j)) #—1forp—p" <j<p-2. (3.4)
If a(pq, f(¢+7)) = —1, then, by Proposition 1 once again, there exist non-negative integers
u, v such that
flg+i)=CE-1p+q—~f—2—2j=up+uvg+ 1. (3.5)
Since (k — 1)p < f(g+ j) < ¢, we obtain that v = 0. Then by taking (3.5) modulo p, we
have zj + 2+ 1 =0 (mod p). It follows from (z — 2)p < zj + z + 1 < zp that

zj+z+1=(z—1)p.
On taking the above equation modulo z, we derive a contradiction to p = 1 (mod z) and

establish the validity of (3.4).
(3) By applying m =qr+p+q+r —1—p” into congruence (1.1), we have

f@)=CE-p+(+1)g—L—2+1—zi,
where i € [0,p — 1] U[g,q + p — 1]. Then

<rf(i) if0<i<p—-lorgq<i<qg+p—2-—7p";
>rf@i) ifq+p-1-p'<i<q+p-1L
So
p—1
a(pgr,m) = — a(pg, f(q+7))- (3.6)
j=p—1-p”

On observing that f(¢+p—1)=(k—1)p+1and f(¢+p—1—p") = g+ 1, we obtain from
Lemma 1 and Proposition 1 that a(pg, f(¢+p—1)) = alpg, f(¢+p—1—p")) = —1. This
allows us rewrite (3.6) as

p—2
a(pgr,m) =2— Y alpg, f(a+7))-
j=p—p”
Set p—p” < j <p-—2. Itis clear that a(pq, f(¢ + j)) € {—1,0,1}. In order to show
a(pgr,m) > 2, it remains to prove that a(pq, f(¢+ 7)) # 1. If the assertion would not hold,
then, by Proposition 1, there exist non-negative integers u, v such that

flg+i)=GE-1p+q—L£—2+1—2j=mup+vq. (3.7)

Since 0 < f(g+ j) < g, we infer that v = 0. Taking (3.7) modulo p yields zj + z — 1 =0
(mod p). It follows from (z —2)p < zj + 2 — 1 < zp that zj + 2z — 1 = (z — 1)p. Then we
can derive that p = 1 (mod z). This leads to a contradiction and completes the proof of
Theorem 1.
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