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Abstract

The cut polytope of a graph G is the convex hull of the indicator vectors of all cuts
in G and is closely related to the MaxCut problem. We give the facet-description of
cut polytopes of K3,3-minor-free graphs and introduce an algorithm solving MaxCut
on those graphs, which only requires the running time of planar MaxCut. Moreover,
starting a systematic geometric study of cut polytopes, we classify graphs admitting
a simple or simplicial cut polytope.
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1 Introduction

The problem of finding a maximum cut in a weighted graph, called MaxCut problem,
is well-known in combinatorial optimization, and one of Karp’s original 21 NP-complete
problems [26]. The research on MaxCut is driven by a variety of applications ranging
from mathematical problems like ℓ1-embeddability [11] over quantum mechanics [2, 12] to
design of electronic circuits [6]. An overview of applications is given in [11, 12].

Formally, considering a graph G = (V,E) with edge weights ce, MaxCut is the problem
of finding a node subset S ⊆ V that maximizes

∑
e∈δ(S) ce, where δ(S) = {e ∈ E : |e∩S| =

1}. The cut polytope Cut□(G) is defined as the convex hull of the indicator vectors of cuts
δ(S), for all S ⊆ V , given by

xδ(S)
e =

{
1, if e ∈ δ(S);

0, else.

Although MaxCut is NP-complete on general graphs, there are some classes of graphs
on which polynomial algorithms are known. In [31, 22] it was shown that MaxCut can
be solved in polynomial time for unweighted planar graphs. This result can be extended to
the weighted case [28, 33].

By Kuratowski’s Theorem [27], a graph is planar if and only if it contains no K5- or
K3,3-subdivision. As an extension of this, Wagner [37] proved that a graph is planar if and
only if it contains no K5- or K3,3-minor.

Using Wagner’s result, Barahona [3] introduced a polynomial-time algorithm solving
MaxCut onK5-minor-free graphs in O(n4) time. This was generalized by Kaminski [25] by
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proving thatMaxCut can be solved in O(n4) time onH-minor-free graphs, for an arbitrary
graph H that admits a drawing with exactly one crossing. An extension of the class of K5-
minor-free graphs was given by Grötschel and Pulleyblank by introducing weakly bipartite
graphs [21, 19]. By definition these are the graphs, whose bipartite subgraph polytope is
completely described by certain cycle- and edge-inequalities (see Section 2). Moreover, they
proved that for positive edge-weights, MaxCut can be solved in polynomial time one these
graphs by using linear programming. In contrast to these results, MaxCut is NP-complete
on K6-minor-free graphs [3].

Considering cut polytopes, it is particularly interesting to find their linear description,
i.e., their facet-defining inequalities. If there is a linear description of polynomial size in the
input, this gives a polynomial algorithm for MaxCut. Even though it is unlikely to find
such a description for arbitrary graphs, a better understanding of cut polytopes is expected
to improve algorithmic results.

Although cut polytopes of complete graphs have been intensively studied (see, e.g.,
[13]), we are far from a good understanding of these objects, especially for Kn, n ≥ 9. Even
much less is known for cut polytopes of arbitrary graphs. The latter were considered, e.g.,
by Barahona and Mahjoub [5]. As an additional result to the polynomial algorithm on
K5-minor-free graphs, they determined all facets of cut polytopes of those graphs.

Not too long ago, Sturmfels and Sullivant [34] established a new connection between
the study of cut polytopes and commutative algebra, as well as algebraic geometry, by
considering related toric varieties. In particular, they conjectured that the cut polytope of
a graph is normal if and only if the graph is K5-minor-free. Among others, the research on
these toric varieties and associated cut algebras has been pursued by Engström [18], Ohsugi
[29, 30], and Römer and Saeedi Madani [32].

It turns out that not much is known about the polyhedral structure of cut polytopes
as objects in discrete geometry. We expect new insights in the study of MaxCut by
considering cut polytopes of graphs not containing a specific minor.

Our contribution and organization of this paper

In Section 2, we recall basic definitions on graphs and polytopes, and summarize known
results on cut polytopes.

In Section 3, we consider K3,3-minor-free graphs. Complementing the results on K5-
minor-free graphs, we provide the full linear description of cut polytopes of K3,3-minor-free
graphs.

Moreover, we give an algorithm solving MaxCut on K3,3-minor-free graphs, requiring
only the running time for MaxCut on planar graphs. This is somewhat surprising, as
K5-minor-free graphs admit an easier linear description, while we achieve a better running
time for MaxCut on K3,3-minor-free graphs.

Starting the investigation of geometric properties of cut polytopes, in Section 4 we com-
pletely characterize graphs that provide a simple or simplicial cut polytope. In particular,
it turns out that graphs providing a simple cut polytope are precisely the C4-minor-free
graphs. The simplicial case can only occur for finitely many graphs.

An aim of this paper is more in putting together some loose ends in the literature than
a paper with completely novel results. Several results are in fact rather expected and some
proofs are rather straight forward. However, we emphasize that there are some pitfalls one
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can easily run into, e.g.—as explained in Section 3—Theorem 3.7 cannot be deduced just
from a graph decomposition into 2-sums, as has been previously suggested. As such, this
paper is also to be understood as a collection and service.

2 Preliminaries

In this section we provide some basic background on graphs and polytopes. Then, we
recapitulate some known results on cut polytopes. For notation and results related to
graphs we refer to [17], for those related to polytopes to [7, 38].

Graphs

We only consider undirected graphs. A graph is simple, if it does neither have parallel
edges connecting the same two nodes, nor self-loops. Unless specified otherwise, we only
consider simple graphs that contain no isolated nodes in the following. For k ∈ N, let
[k] = {1, . . . , k}. Given a graph G = (V,E) we also write V (G) and E(G) for its set of
nodes V and its set of edges E, respectively. For v, w ∈ V (G), let vw = {v, w} be the edge
between v and w. Two nodes v and w are adjacent if vw ∈ E(G).

A path of length k is a sequence of edges e1, . . . , ek with ei = vi−1vi such that vi ̸= vj
for 0 ≤ i < j ≤ k. Such a sequence with v0 = vk is a cycle; a cycle of length 3 is a
triangle. A graph H is a subgraph of G, denoted by H ⊆ G, if (after possibly renaming)
V (H) ⊆ V (G) and E(H) ⊆ E(G). Given a subset W ⊆ V , the subgraph induced by W is
the graph G[W ] = (W, {uv ∈ E : u, v ∈ W}). If an induced subgraph forms a cycle, this is
an induced cycle and thus chordless. A graph G is chordal, if every induced cycle in G has
length 3. (Edge-) Maximal planar graphs are triangulations. We fix the following notations
for some special classes of graphs: Cn for the cycle of length n; Kn for the complete graph
on n nodes; Kn,m for the complete bipartite graph on n and m nodes per partition set.

G is a H-subdivision, if G is obtained from H by replacing edges by internally node-
disjoint paths. The graph G− e is obtained from G by deleting the edge e. The graph G/e
is obtained from G by contracting edge e = vw, i.e., the nodes v and w are identified, and
we delete the arising self-loop and merge parallel edges. G contains an H-minor, if H can
be obtained from G by contracting and deleting edges and isolated vertices. Otherwise G
is H-minor-free.

G is k-connected if for each pair of nodes v, w ∈ V (G) there exist k internally node-
disjoint paths from v to w. In particular, 1-connected graphs are called connected. If G is
connected but not 2-connected, there exists some cut-node v ∈ V (G) such that G − v =
G[V \ {v}] is disconnected.

For two graphs G and H, their union G∪H = (V (G)∪V (H), E(G)∪E(H)) is disjoint
if their node sets are; in this case we write G ·∪H. Assume two graphs G, H contain Kk as
a subgraph, for some k ∈ N>0. The k-sum (or clique-sum) is obtained by taking the union
of G and H, identifying the Kk subgraphs and possibly also removing edges contained in
this specific Kk. A k-sum is strict, if no edges are removed. We denote the strict k-sum of
G and H by G⊕k H.

By Kuratowski’s (Wagner’s) Theorem [27, 37], a graph is planar if and only if it contains
no K5- or K3,3-subdivision (minor, respectively). Given a K5-subdivision H contained in
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G we call the nodes of degree 4 in H Kuratowski nodes. The paths in H between these
nodes are Kuratowski paths.

Cut Polytopes

A polytope P is the convex hull of finitely many points in Rd. The dimension of P is
the dimension of its affine hull. A linear inequality aTx ≤ b0 is a valid inequality for P
if it is satisfied by all points x ∈ P . It is homogenous if b0 = 0. A (proper) face of
P is a (non-empty) set of the form P ∩ {x ∈ Rd : aTx = b0} for some valid inequality
aTx ≤ b0 with a ̸= 0. Each face is itself a polytope. The faces of dimension 0 and
dimension dim(P ) − 1 are vertices and facets, respectively. For polytopes P ⊆ Rn and
Q ⊆ Rm we define the product P ×Q = {(x, y) ∈ Rn+m : x ∈ P, y ∈ Q}. It is a polytope
with dim(P ×Q) = dim(P )+dim(Q), and the proper faces of P ×Q are given by products
of proper faces of P and proper faces of Q.

If P ∩ {x ∈ Rd : aTx = b0} is a facet of P , the inequality aTx ≤ b0 is facet-defining.
Each polytope can be represented as the bounded intersection of finitely many closed half-
spaces, i.e., P admits a linear description P = {x ∈ Rd : Ax ≤ b} for some matrix A and
some vector b. This is given, e.g., by taking the system of all facet-defining inequalities.
A simplex of dimension d is the convex hull of d + 1 affinely independent points. A d-
dimensional polytope P is simple if each vertex of P is contained in exactly d facets; the
polytope is simplicial if each facet of P is a simplex.

Given a graph G = (V,E) and a subset S ⊆ V , the set δ = δ(S) = δ(V \ S) = {e ∈ E :
|e ∩ S| = 1} is a cut in G. If G is connected, this gives 2|V |−1 pairwise different cuts. To
each cut δ in G we associate its indicator vector xδ ∈ RE given by

xδ
e =

{
1, if e ∈ δ;

0, else.

The cut polytope of G is defined as their convex hull

Cut□(G) = conv({xδ : δ is a cut in G}) ⊆ RE ,

and has dimension dim(Cut□(G)) = |E(G)|, see, e.g., [4, p.344]. For disconnected graphs
G1 ·∪G2 we have

Cut□(G1 ·∪G2) = Cut□(G1)×Cut□(G2). (2.1)

Similarly, we may consider clique sums. As many classes of graphs can be described in
terms of these, it is reasonable to study their effect on cut polytopes.

Theorem 1 (see [3, Theorem 3.1.]). Let G = G1⊕kG2 be a strict k-sum with k ∈ {1, 2, 3}.
Then the facet-defining inequalities of G are given by taking all facet-defining inequalities
of G1 and G2 and identifying the variables of common edges. In particular, it holds that

Cut□(G1 ⊕1 G2) = Cut□(G1)×Cut□(G2). (2.2)

Any automorphism ϕ of a graph G gives rise to a map on cuts. Thus, ϕ induces a
permutation on the vertices of Cut□(G) by mapping xδ to xϕ(δ), which yields a symmetry

of Cut□(G). Another symmetry of cut polytopes is given by switching :
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Lemma 2 (Switching Lemma, see [5, Corollary 2.9.]). Let G = (V,E) be a graph and aTx ≤
b be a facet-defining inequality for Cut□(G). Let W ⊆ V , and define b′ = b−

∑
e∈δ(W ) ae,

and a′e = (−1)1[e∈δ(W )] · ae for all e ∈ E. Then (a′)Tx ≤ b′ defines a facet of Cut□(G).

On the level of cuts, switching in δ(W ) is induced by the map δ 7→ δ△δ(W ) = (δ ∪
δ(W ))\ (δ∩δ(W )). Switching a facet-defining inequality by a cut corresponding to a vertex
of this facet gives a homogeneous facet-defining inequality. Thus, all symmetry classes of
facets of Cut□(G) contain facets of the cut cone Cut(G) = cone({x ∈ Cut□(G)}) ⊆ RE .
Hence, it suffices to understand the facets of cut cones to understand the facets of cut
polytopes.

Since Cut□(G) is contained in the unit cube, the inequalities 0 ≤ xe ≤ 1 are valid.
Given a cut δ and a cycle C in G, the number of edges in δ ∩ C clearly is even. These
observations give rise to the following edge- and cycle-inequalities:

Theorem 3 (see [5, Section 3]). The valid inequalities 0 ≤ xe ≤ 1 define facets of Cut□(G)
if and only if e does not belong to a triangle. The valid inequalities∑

f∈F

xf −
∑

e∈E(C)\F

xe ≤ |F | − 1, for all cycles C ⊆ G, F ⊆ E(C) with |F | odd

define facets if and only if C is chordless.
Moreover, a graph G is K5-minor-free if and only if Cut□(G) is defined completely by

the cycle- and edge-inequalities.

In particular, for each triangle ∆ with E(∆) = {e, f, g} the following metric inequalities

(up to permuting the edges) are facet-defining for Cut□(G):

xe + xf + xg ≤ 2 and xe − xf − xg ≤ 0.

As a generalization of metric inequalities we get hypermetric inequalities by considering
the complete graph instead of triangles, see [5, Theorem 2.4.]. An example for these is
given by the hypermetric inequality of K5 in Inequality (3.1). All above facets correspond
to complete subgraphs or, in the case of cycle-inequalities, subdivisions of these. There
also exist facet-defining inequalities whose support graph is not complete, see, e.g., [5,
Theorem 2.3].

For complete graphs, further classes of facet-defining inequalities are given in [1, 13]. In

particular, for n ≤ 7 all facets of Cut□(Kn) are classified [13, Chapter 30.6] and all facets

of Cut□(K8) have been computed [9, Section 8.3], [14]. It is a major open problem to

determine the facets of Cut□(Kn) for n ≥ 9.

3 K3,3-minor-free Graphs

In this section, we consider K3,3-minor-free graphs and provide the complete linear de-
scription of their cut polytopes. We also show that this yields an efficient algorithm for
MaxCut on K3,3-minor-free graphs. This complements the known facts on K5-minor-free
graphs. Moreover, since K5 is maximal K3,3-minor-free but not weakly bipartite, we obtain
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the first full polyhedral description of a general minor-closed graph class apart from weakly
bipartite graphs.

We first characterize maximal K3,3-minor-free graphs. Per se, this is not new: it is
sometimes referenced to (different papers by) Wagner and/or to [16], whereby the latter
does not include a proof; a complete proof in modern terminology was given in [35]. Here,
we propose a slightly different approach, using 3-connectivity components. This provides
a simpler, more basic proof and turns out to be directly usable for our polyhedral and our
algorithmic results.

Let G = (V,E) be a 2-connected, not necessarily simple graph and let {v, w} be a split
pair in G, i.e., G − {v, w} is disconnected or there are parallel edges connecting v and w.
The split classes of {v, w} are given by a partition E1, . . . , Ek of E such that two edges
are in a common split class if and only if there is a path between them neither containing
v nor w as an internal node. As G is 2-connected, it is easy to see that v and w are both
incident to each split class. For a split class C let C = E \ C. A Tutte split replaces G by
the two graphs G1 = (V (C), C ∪ {e}) and G2 = (V (C), C ∪ {e}), provided that G1 − e or
G2−e remains 2-connected. Thereby, e is a new virtual edge connecting v and w; the other
edges are called original. Observe that this operation may yield parallel edges. Iteratively
splitting the graphs via Tutte splits gives the unique 3-connectivity decomposition of G. Its
components can be partitioned into the following sets: a set S of cycles, a set P of edge
bundles (two nodes joined by at least 3 edges), and a set R of 3-connected graphs, see, e.g.,
[36, 23].

Lemma 4. Any maximal K3,3-minor-free graph G is 2-connected.

Proof (alternative to [35], see above). Clearly, G is connected, as otherwise we could join
two connected components via an edge without obtaining a K3,3-minor. Assume that G is
not 2-connected and let v ∈ G be a cut-node separating G into G1 and G2. Choose w1 ∈ G1

and w2 ∈ G2 adjacent to v and obtain the graph G̃ from G by adding the edge w1w2. As
a sidenote, this operation retains planarity for planar G. Since G̃ contains only two paths
between G1 and G2 but K3,3 is 3-connected, G̃ is still K3,3-minor-free. This contradiction
concludes the proof.

Proposition 5. Let G be a maximal K3,3-minor-free graph. Then, G can be decomposed
as a strict clique-sum G = G1 ⊕2 · · · ⊕2 Gk, where each Gi is either a planar triangulation
or a copy of K5.

Proof (alternative to [35], see above). LetG be a maximalK3,3-minor-free graph. By Lemma 4,
G is 2-connected, so we may consider its 3-connectivity decomposition. Whenever a virtual
edge ab was introduced, both parts of the Tutte split contain a path between a and b.
Furthermore, G contains a K3,3-minor if and only if one of the components of its decompo-
sition does. But then, if G would not contain an original edge connecting a and b, we could
introduce it without creating a K3,3-minor. Thus, each virtual edge corresponds to an edge
e ∈ E(G) by maximality of G, and G is the strict 2-sum of cycles and 3-connected graphs.
By maximality of G, the cycles are triangles, a trivial form of a planar triangulations.

Let H be a 3-connected graph from this sum. If H is planar, then – by maximality –
it is a triangulation. Otherwise, by Kuratowski’s Theorem, H contains a K5-subdivision.
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(a)

w1v

w2

w3

w4

w5

(b)

Figure 1: Graphs of the proof of Proposition 5

Assume that H ̸= K5. If H contains K5 as a subgraph, then it contains the graph shown
in Figure 1(a) as a minor, and thus a K3,3-minor, which yields a contradiction.

Assume that H contains a proper subdivision of K5 with Kuratowski nodes S =
{w1, . . . , w5} and let v ∈ V (H) \ S be a node of this subdivision. Since H is 3-connected,
there are disjoint paths from v to three pairwise distinct Kuratowski nodes, say w1, w2, w3.
But then H contains the graph of Figure 1(b) as a minor, which itself contains a K3,3-minor.
This concludes the proof.

Proposition 5 allows us to classify all facets of cut polytopes of maximal K3,3-minor-free
graphs:

Theorem 6. Let G be a maximal K3,3-minor-free graph. Then all facets of Cut□(G) are
given by cycle-inequalities for each induced cycle in G and switchings of the facet-defining
inequality ∑

e∈E(K5)

xe ≤ 6 for each K5-subgraph. (3.1)

Proof. We know from Theorem 1 that the facets of the cut polytope of a 2-sum of graphs
are given by taking all facets of the cut polytopes of both graphs and identifying common
variables. Moreover, by Theorem 3 all facets of the cut polytope pf a planar triangulation
are given by cycle-inequalities; the facets of Cut□(K5) are given by metric inequalities and
switchings of (3.1) [13, Chapter 30.6]. Since maximal K3,3-minor-free graphs are 2-sums of
copies of K5 and planar triangulations, this yields the claimed result.

We can use Theorem 6 to classify the facets of the cut polytope of any K3,3-minor-free
graph.

Corollary 7. Let G be a K3,3-minor-free graph. Then, G can be decomposed as a (not
necessarily strict) k-sum of planar graphs and/or copies of K5, with k = 1, 2.

Let H be a maximal K3,3-minor-free graph containing G. Then, the facets of Cut□(G)

are obtained by projecting Cut□(H) onto {xe = 0 : e ∈ E(H) \ E(G)}.

Proof. The decomposition claim follows from Proposition 5. Alternatively, we can obtain
G from H by deleting edges. On the level of cut polytopes, the effect of an edge deletion
e ∈ E(H) corresponds to a projection onto {x ∈ RE : xe = 0}.
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On the level of facets, a projection of a polytope to a coordinate hyperplane is given by
eliminating variables. This can be done by Fourier-Motzkin elimination [38, Chapter 1.2],
which is made more precise in the following example.

Example 8. Consider the non-maximal K3,3-minor-free graph G shown in Figure 2. It
is obtained by taking the non-strict 2-sum of two copies of K5. Let these copies of K5 be
G1 = (V,E) and G2 = (W,F ) with V = {v1, v2, v3, u1, u2} and W = {u1, u2, w1, w2, w3}.

w1

u2

u1

w3

w2

v1

v3

v2

Figure 2: Graph of Example 8

Both G1−u1u2 and G2−u1u2 are planar and chordal. Thus, all facets of their cut poly-
topes are given by metric inequalities, and those are also facets of Cut□(G). All other facets

of Cut□(G) are obtained by taking a pair of facets f1 of Cut□(G1) and f2 of Cut□(G2)
and eliminating the variable xu1u2

by summing the corresponding inequalities. In the fol-
lowing we focus on the latter class of facets. Choosing one representative for each class of
facet-defining inequalities of G1 and G2 we get:

(1) one metric inequality of G1: xu1u2 + xu2v1 + xu1v1 ≤ 2,

(2) one hypermetric inequality of G1:
∑

e∈E xe ≤ 6,

(3) one metric inequality of G2: −xu1u2
− xu2w1

+ xu1w1
≤ 0,

(4) one hypermetric inequality of G2:
∑

f∈F : u2 /∈F xf −
∑

f∈F : u2∈f xf ≤ 2.

Using Fourier-Motzkin elimination we have to sum each pair of inequalities such that
there is one facet of each graph:

xu2v1 + xu1v1 − xu2w1
+ xu1w1

≤ 2, (1+3)∑
f∈F : u2 /∈f

xf − xu2w1 − xu2w2 − xu2w3 + xu2v1 + xu1v1 ≤ 4, (1+4)

∑
e∈E: e̸=u1u2

xe − xu2w1
+ xu1w1

≤ 6, (2+3)

∑
e∈E: e ̸=u1u2

xe +
∑

f∈F : u2 /∈f

xf − xu2w1
− xu2w2

− xu2w3
≤ 8. (2+4)
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(1+3) is a cycle-inequality. Switching (1+4) at δ({u2}) shows that this inequality is equiv-
alent to (2+3). These inequalities correspond to copies of K5 with one subdivided edge
contained in G. The support graph of facet (2+4) is G: This type of inequality is neither
facet-defining for complete graphs nor does it belong to one of the mentioned classes of
facet-defining inequalities in Section 2. ◀

As demonstrated in the above example, Fourier-Motzkin elimination yields all facet-
defining inequalities of a non-maximal K3,3-minor-free graph as sums of cycle- inequalities

and hypermetric K5-inequalities. The support graph of a valid inequality f for Cut□(G)
is the graph H ⊆ G induced by edges with non-zero coefficients in f. From Theorem 3 we
can thus deduce that the support graph of a facet-defining inequality is an edge, a cycle
or contains a K5-minor. Considering the sum of two facets f1 and f2 used to eliminate the
variable xe we observe the following: If f2 is a cycle-inequality, summing it to f1 acts on the
support graph of f1 as subdividing e; the effect of subdividing an edge in the support graph
of a facet is described in [5, Corollary 2.10]. If f2 is a hypermetric K5-inequality, summing
it to f1 acts on the support graph of f1 as replacing e by K5 − e; all non-zero coefficients
of the obtained inequality are ±1. Although possible, it is tedious to determine the exact
signs and thus the constant term of the inequalities. However, we can concisely describe
the facets’ support graphs. For this, recall that each cycle is a subdivision of a triangle.

Corollary 9. Let f be a facet of the cut polytope of a K3,3-minor-free graph G. All its
non-zero coefficients are ±1 and its support graph is an induced subgraph of G that is either

• an edge that is not contained in a triangle, or

• obtained from a triangle or a K5 by repeatedly (possibly zero times) subdividing edges
and/or replacing an edge e by K5 − e.

Algorithmic Consequences

Barahona [3, Section 4] gave an O(|V |4) algorithm for MaxCut on K5-minor-free graphs.
We complement this result by giving an algorithm for MaxCut on K3,3-minor-free graphs
whose running time is identical to that of planar MaxCut is given. Currently, the best
known running time for the latter is O(|V | 32 log |V |) [28, 33].

Our algorithm is based on the decomposition from Proposition 5. Considering only the
case of two subgraphs, joined via a 2-sum, either their common vertices are in the same
partition side or not. A straight forward idea to compute a maximum cut in this case would
be to compute both cases for both subgraphs and pick the best choice. However, the number
of subgraphs occurring in a graphs decomposition into 2-sums may be in Θ(|V (G)|). Thus,
the described procedure ad hoc yields exponential running time. Besides solving this issue,
we discuss an efficient, in particular even linear time, procedure to find and utilize such a
decomposition of a given graph.

We use a data structure to efficiently consider the components of the 3-connectivity
decomposition of G. Recall that they are cycles S, edge bundles P , and 3-connected graphs
R. The SPR-tree T = T (G) has a node for each element of S, P , and R [15, 8]1. For a

1The data structure is also known as SPQR-tree. However, the originally proposed nodes of type Q (as
well as the tree’s orientation) have often turned out to be superfluous.
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node v ∈ V (T ), let Hv denote its corresponding component. Two nodes v, w ∈ V (T ) are
adjacent if and only if Hv and Hw share a virtual edge. G can be reconstructed from T by
taking the non-strict 2-sum of components whenever their corresponding nodes are adjacent
in T . Following this interpretation, P -nodes containing a non-virtual edge represent strict
2-sums of their adjacent components of the decomposition. T has only linear size and can
be computed in O(|E(G)|) time [23, Lemma 15].

Theorem 10. The MaxCut problem on K3,3-minor-free graphs can be solved in the same
time complexity as MaxCut on planar graphs.

Proof. Let G = (V,E) be a K3,3-minor-free graph with edge weights ce, e ∈ E. Let
p(n) ∈ Ω(n) be the best known running time for MaxCut on planar graphs with n nodes.
For A,B ⊆ E we denote by βG(A,B) the maximum weight over cuts δ ⊆ E(G) with
A ⊆ δ and B ∩ δ = ∅. If G is not 2-connected, we apply the algorithm to its 2-connected
components (which can be identified in linear time). Assume in the following that G is
2-connected.

We want to insert “original” edges of weight 0 into G between split pairs corresponding
to Tutte splits. This will allow us to only consider strict 2-sums. To this end compute
the SPR-tree T = T (G). For any P -node v ∈ V (T ) whose Hv contains only virtual
edges, introduce a new original edge of weight 0 into Hv, and therefore also into G. For
any adjacent non-P -nodes v, w ∈ V (T ), let ab be the virtual edge shared between their
components. We introduce a new original edge ab into G. This yields a new P -node u
subdividing the edge vw in T . The edge bundle Hu contains the new original edge together
with two virtual edges, one shared with Hv, the other with Hw. By this construction,
for every virtual edge there is an original edge with the same end nodes. Throughout the
following, we always consider the weight of a virtual edge ab to be identical to the weight
of the original edge ab. We continue to denote the resulting graph and tree by G and T ,
respectively.

Let v be a leaf in T and ab be the virtual edge contained in H = Hv. Note that v
is either an S- or an R-node and thus, H is either a copy of K5 or planar. We compute
β+ = βH({ab}, ∅) and β− = βH(∅, {ab}). If H = K5, this requires only constant time.
Thus the needed work is bounded by O(p(|(V (H)|)). Let γ = β+ − β− be the gain/loss by
having ab in the cut, respectively. Removing v from T and therefore all edges of Hv from
G yields a graph G′. T (G′) is obtained from T − v by removing the potential P -node-leaf
(and considering the “dangling” virtual edge as original, retaining its current cost). Setting
the cost of the original edge ab to γ (after the computation of β+ and β−) yields that the
maximum cut on G is exactly β− + ξ, where ξ is the maximum cut in G′ (after updating
the edge weight).

In this way, we can iteratively compute a maximum cut on G by eliminating all nodes
of its SPR-tree. The SPR-tree of G can be built in O(|E|) time. Let H1, . . . ,Hk be the
components corresponding to R- and S-nodes in T (G), k ≤ |V |. By planarity (or constant
size of K5), we have |E(Hi)| ∈ O(|V (Hi|)), and hence |E| ∈ O(|V |). For each Hi, i ∈ [k],

we require only O(p(|V (Hi)|)) time. Since p(|V |) ∈ Ω(|V |) we have
∑k

i=1 p(|V (Hi)|) ∈
O(p(|V |)). The claim follows.
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4 Simple and Simplicial Cut Polytopes

In this section, we completely characterize graphs whose cut polytopes are simple or sim-
plicial.

In [20], it was claimed that Cut□(G) is simple if and only if G contains no C4-minor.
Unfortunately, the given proof has some gaps. For example, [20, Proposition 3.2.4.] claims
that a 0-1-polytope is simple if and only if it is smooth. The proof mistakenly assumes
that Cut□(G) is always the polytope corresponding to the cut-variety in the sense of toric
geometry. It is then used that a toric variety is smooth if and only if the corresponding
polytope is, see [10, Theorem 2.4.3]. However, the cut polytope Cut□(K3) is simple but not
smooth, since the edges (1, 1, 0), (1, 0, 1) and (0, 1, 1) do not form a basis of Z3. Contrarily
the cut variety of K3 is smooth, see [34, Corollary 2.4].

Nevertheless, in the following we show that the claimed characterization of graphs whose
cut polytopes are simple is true. Our proof only requires basic tools from graph theory and
discrete geometry.

Definition 11. An ear in a graph G is a maximal path whose internal nodes have degree
2 in G. An ear decomposition of a 2-connected graph G is a decomposition G =

⋃n
i=0 Gi

such that G0 is a cycle and Gk is an ear of
⋃k

i=0 Gi for all 1 ≤ k ≤ n.

A graph is 2-connected if and only if it admits an ear decomposition, see, e.g., [17,
Proposition 3.1.2]. Utilizing this, we can characterize C4-minor-free graphs in terms of
decompositions. This is not new, as it is stated (without a proof) in [16]. We include a
short proof for the convenience of the reader.

Lemma 12. Let G be a connected graph. Then the following are equivalent:

(i) G is C4-minor-free;

(ii) G = G1 ⊕1 · · · ⊕1 Gk with Gi = K2 or Gi = K3 for each i ∈ [k].

Proof. SinceK2 andK3 are C4-minor-free and 1-sums create cut-nodes, it is easy to see that
(ii) implies (i). To show the reverse direction, let G be a C4-minor-free graph. Considering
its 2-connected components gives a decomposition G = G1 ⊕1 · · · ⊕1 Gk, where Gi = K2 or
Gi is 2-connected.

It is left to show that the only 2-connected C4-minor-free graph is K3. Assume that G
is a 2-connected C4-minor-free graph and consider its ear-decomposition G = G0∪· · ·∪Gk.
Since G is C4-minor-free, G0 is a copy of K3. Attaching an ear to two of its nodes would
yield a C4-minor. Hence G = K3.

Given this characterization, we are able to show that C4-minor-free graphs are exactly
those graphs whose cut polytopes are simple.

Theorem 13. The following are equivalent:

(i) Cut□(G) is simple;

(ii) Cut□(G) is the product of (0,1)-simplices arising as the cut polytopes of the 2-
connected components of G, which then necessarily have to be K2 or K3.
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(iii) G is C4-minor-free.

Observe that the equivalence of (i) and (ii) can be seen as the cut version of the structure
of simple (0,1)-polytopes according to [24]: A (0,1)-polytope is simple if and only if it is
the product of (0,1)-simplices. However, it is not a priori clear that the latter simplices are
cut polytopes; even if they are, it is unclear how the corresponding graphs are related to
G. We hence need to explicitly prove Theorem 13.

Proof. Note that a product of polytopes is simple if and only if each of the polytopes is
simple. If G is not connected, then Cut□(G) is the product of the cut polytopes of the
connected components of G. If G is connected but not 2-connected, it can be decomposed
as G = G1 ⊕1 ...⊕1 Gk such that Gi is either 2-connected or a copy of K2. Recall that
Cut□(K2) and Cut□(K3) are simplices.

For the equivalence of (i) and (ii), it remains to show that the cut polytope of a 2-
connected graph G is not simple if G ̸= K3. Then each edge e ∈ E(G) is contained in a
chordless cycle Ce. By Theorem 3 the inequalities

xe −
∑

f∈E(Ce)\{e}

xf ≤ 0 (4.1)

define |E(G)| many different facets of Cut□(G) that contain the origin.
If G = Cn, n ≥ 4, no edge is contained in a triangle and xe ≥ 0 defines a facet of

Cut□(G) for all e ∈ E. Hence, 0 is contained in at least 2|E(G)| many different facets and

as dim(Cut□(G)) = |E(G)|, the cut polytope is not simple. Similarly, if G ̸= Cn, then
there has to exist a chord e in some cycle. In particular, e lies in two chordless cycles. Thus,
the origin is contained in at least |E| + 1 facets and hence Cut□(G) is not simple. Part
(iii) is equivalent to (ii) by Lemma 12.

Next we study graphs whose cut polytopes are simplicial. It was shown in [13] that
the cut polytope of Kn is not simplicial for n ≥ 5. We generalize this result by giving a
complete characterization of graphs with simplicial cut polytopes.

Table 1: All graphs on n ≤ 4 non-isolated nodes (cf. Theorem 14)

Graph G

Cut□(G) simplicial? ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Theorem 14. Let G be a graph with no isolated nodes. Then the following are equivalent:

(i) Cut□(G) is simplicial;

(ii) G is one of the following graphs:

K2, K2 ·∪K2, K2 ⊕1 K2, K3, K4, C4.
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Proof. Recall that if H is obtained from G by edge contraction, Cut□(H) is a face of

Cut□(G). Hence, if Cut□(H) is not a simplex, Cut□(G) is not simplicial.

First consider the graphs in Table 1. Recall that Cut□(K2) is simplicial and 1-

dimensional. By (2.1) and (2.2), this yields that Cut□(K2 ·∪K2) and Cut□(K2 ⊕1 K2)

are simplicial. Cut□(K3) is a 3-simplex. It is straight-forward to verify that Cut□(K4)

is affine isomorphic to the 6-dimensional cyclic polytope on 8 vertices and Cut□(C4) is
affinely isomorphic to a cross-polytope, both of which are simplicial. The remaining graphs
are all contractible to a path of length 3 and thus, their cut polytopes are not simplicial.

If G is a connected graph on at least 5 vertices, G is contractible to a connected graph
on 4 vertices. None of those yield a simplex. If G is disconnected but not K2 ·∪K2, then G
is contractible to the disjoint union of copies of K2. Since the cut polytope of the latter is
a hypercube, Cut□(G) is not simplicial.

5 Conclusion

We have determined the linear description of cut polytopes of K3,3-minor-free graphs and
classified all graphs with a simple or simplicial cut polytope.

Throughout this paper one can see that besides graph minors, the decomposition of
graphs into clique-sums of specific graphs is a useful tool to understand cut polytopes. This
motivates several questions discussed in the following.

In [25], it was shown that for each single-crossing graph H, MaxCut can be solved in
polynomial time on the class of H-minor-free graphs. For H = K5 and H = K3,3 the linear
description of cut polytopes of H-minor-free graphs is now known. This naturally leads to
the following question:

Question 15. Can one give the linear description of cut polytopes of H-minor-free graphs,
for single-crossing graphs H ̸= K5,K3,3?

By Theorem 1 for k ≤ 3 the linear description of a strict k-sum of two graphs is given
by taking all facet-defining inequalities of both graphs and identifying common variables.
This can be traced back to the fact that in these cases Cut□(Kk) is a simplex. Although
this does not hold for k ≥ 4, the cut polytope of K4 is a cyclic polytope and as such well
understood. Therefore, the following question arises:

Question 16. Can one give a linear description of the 4-sum of two graphs in terms of
their linear descriptions?

While we give a linear description of cut polytopes ofK3,3-minor-free graphs in Section 3,
there are further graphs that fall under the same facet regime (interestingly, even K3,3

itself). We thus ask:

Question 17. Can one characterize all graphs whose cut polytopes are described by the
inequalities from Section 3?
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[37] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann., 114 (1), 570–
590 (1937).

[38] G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer,
New York (2012).

Received: 05.11.2021
Revised: 10.12.2021
Accepted: 13.12.2021

(1) School of Mathematics/Computer Science, University of Osnabrück, Germany

E-mail: markus.chimani@uni-osnabrueck.de

(2) School of Mathematics/Computer Science, University of Osnabrück, Germany

E-mail: juhnke-kubitzke@uni-osnabrueck.de

(3) School of Mathematics/Computer Science, University of Osnabrück, Germany

E-mail: anover@uni-osnabrueck.de

(4) School of Mathematics/Computer Science, University of Osnabrück, Germany

E-mail: troemer@uni-osnabrueck.de


