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Abstract

We present combinatorial proofs of two g-binomial coefficient identities, which give
two new g-analogues of the binomial coefficient identity:
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where |z] denotes the integral part of real x.
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Introduction

There are many g-analogues of the following binomial coefficient identity:
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where |x] denotes the integral part of real z. Here and throughout this paper, the g-shifted
factorials are given by (a;q), = (1 —a)(1 —aq) - (1 —ag"™ ') for n > 1 and (a;q) = 1,
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and the g-binomial coefficients are defined as

0 otherwise.

ifo<k<n,

We refer the interested reader to [2, 4, 5] for (1.2) and (1.3). In 2014, Guo and Zhang [3]
gave combinatorial proofs of (1.2)—(1.4). The purpose of this note is to establish another
two g-analogues of (1.1), which appear to be new.

Theorem 1. For any positive integer n, we have
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Theorem 2. For any positive integer n, we have
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It is clear that letting ¢ — 11in (1.5) and (1.6) leads us to the binomial coefficient identity
(1.1). Inspired by Guo and Zhang’s method [3], we shall present combinatorial proofs of
(1.5) and (1.6) in Sections 2 and 3, respectively.

2 Proof of Theorem 1

Let S ={ay,- - ,a2,} be a set of 2n elements, and let
F={ACS:#A=n (mod2)},
G ={ACS:#(AN{azi_1,a9;}) =1, foralli=1,--- n}.

For any A € .7, we associate A with a sign sgn(A4) = (—=1)#4=)/2 and a weight ||A|| =
> aca @ By the g-binomial theorem [1, Theorem 3.3]:

(—az:q)n = Zn: m q('5),

k=0
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we have

2

AC([n]
#A=k

Al = mq(%l), (2.1)

where [n] = {1,--- ,n}.
Let {a2i717a2i} = {_271}7 fori = 17 U 7n_27 {a2n737 a2n72} = {O7n} and {a2n717a2n} =
{n —1,n+ 1}. Note that S is obtained by [2n] by a shift —(n — 1):
S={2-n,3-n,---,n—2,n—1,n,n+1}

By using (2.1), we obtain
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On the other hand,
S sen(A)gl = 37 sgn(A)gdM + 3 sgn(A)g. (2.3)
AeF A F\YG Ae¥9
It is obvious that
n—2
> sen(A)gI A =" gl = 1+ ¢") (" + ") [ (@ + a7 (2.4)
AcY Ae9 i=1

We define the involution f on .% \ ¢ as follows:
AU{agi-1,a2}, if {azi—1,a2:} N A =0,
A\ {azi-1, a2}, if {azi—1,0a2:} C A,
where i is the first number such that #(A N {ag;—1,a2;}) # 1. Let
H={AecF\Y:31<i<n—2st.#(AN{azi_1,a2}) # 1}.
The involution f is closed, weight-preserving, and sign-reversing on . Thus,

S sl = ST san(a)gll (25)

AeF\G A(F\G)\#
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Note that A € (F \ ¥4) \ 2 if and only if A belongs to one of the following types:

{by,- -
{by,- -
{by,---
{by,- -

) bn—Q}a
ybn—2,02,—3, 0202},
ybn—2,a2n_1, a2n}7

) bn—?; a2n—3,A2n—2,A2n—1, a2n}7

where b; € {az;—1,a2;}. It follows that
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Combining (2.3)—(2.6) gives
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It follows from (2.2) and (2.7) that
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as desired.

3 Proof of Theorem 2

Let

1 1
{agi—1,a9:} = {—i+2,i—2}, fori=1,---,n—2,

3 3
{azn—3,a2n—2} = {n - 5771 + 2} )

1 1
{a2n717a2n} = {n - 5;774 + 2} .
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Note that S is obtained by [2n] by a shift —(n — 3/2):

S = —n+§ n—§n—§n—1n—4—1n—l—§
I R S A R R L)

Following the notation in the previous section and using (2.1), we have
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By using a similar method as in the previous section, we have

Z sgn(A)glAll = (gn=3/2 4 gnt3/2)(gn=1/2 4 gn+1/2) H Y2 4 gl (3.2)
Acg i=1

and
3 sen(A)dl= 3T sgn(A)gMl

AcF\Y Ae(F\G\X

(~1+2¢*" =) [T 2+ 717, (3.3)

Finally, combining (3.1)—(3.3), we complete the proof of (1.6).
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