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Abstract

In this paper, we study multivariate Schur-constant distributions. We provide some
interesting properties of these distributions. The Laplace transform of partial sum of
Schur-constant vectors is also investigated.
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1 Introduction

An n-dimensional positive random vector (X1, . . . , Xn) is said to have a Schur-constant
distribution if its joint survival function has the particular form

P(X1 > x1, . . . , Xn > xn) = S(x1 + · · ·+ xn), x1, . . . , xn ≥ 0, (1)

for some admissible function S : R+ → [0, 1]. The function S is called generator of Schur-
constant distributions.

Schur-constant models are utilized to analyze random lifetimes. These models play a
crucial role in Bayesian analysis of lifetimes because they possess a no-aging property, i.e.,
the distribution of lifetimes is exchangeable, see, e.g., Barlow and Mendel [2, 3], Caramellino
and Spizzichino [4, 5], Unnikrishnan and Sankaran [16, 17]. Recently, Schur-constant models
have a wide range of applications in, e.g, life sciences, actuarial sciences, finance, telecom-
munication and reliability, let us mention, among others, Ta et al [14, 15], Chi et al [7],
Castañer et al [6], and Lefèvre and Simon [9]. Bivariate Schur-constant models, partic-
ularly those used by Kozlova and Salminen [8], Salminen and Vallois [11], and Salminen
et al. [12], have been employed to investigate the starting and ending times of the busy
periods in diffusion local time storage. These investigations have made significant contri-
butions to the applications of the models in the field of telecommunications. Furthermore,
Ta and Van [15] studied the Laplace transform of bivariate Schur-constant models, leading
to the development of a new family of copulas. Utilizing these newly derived copulas, they
investigated the dependence structure between the starting and ending times of the busy
periods in diffusion local time storage.

It is noteworthy that most research in the field has focused on bivariate Schur-constant
distributions. In this paper we provide some remarks and interesting properties of multi-
variate Schur-constant distributions. The paper is organized as follows. In the following
section we introduce the concept and some important properties of order statistics, and the
last section provides main results on multivariate Schur-constant models.
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2 Order Statistics

Order statistics is a branch of statistical science. It has a wide range of applications in, e.g.,
actuarial sciences, medicine, and auction. In the next section, we will explore the connection
between Schur-constant random variables and order statistics. To better understand this
connection, we will review some important properties of order statistics. For more rigorous
treatments and properties of order statistics, we refer to Arnold et al. [1].

Let X1, X2, ...., Xn be independent copies of a real random variable X with distribution
function F . We define X(1) := min{X1, X2, . . . , Xn}, X(2) := min{{X1, X2, . . . , Xn} \
{X(1)}}, and X(n) := max{X1, X2, ...., Xn}. The vector (X(1), X(2), . . . , X(n)) is called
order statistics of X. We have

X(1) ≤ X(2) ≤ · · · ≤ X(n).

In actuarial sciences and extreme value theory, the distributions of extreme values X(1) and
X(n) are of significant importance. It is straightforward to check the following identities

FX(n)(x) = P(X(n) ≤ x) = [F (x)]n, (2)

FX(1)(x) = P(X(1) ≤ x) = 1− [1− F (x)]n, x ∈ R. (3)

Furthermore, the distribution of the kth order variable X(k) is determined as follows.

Proposition 2.1. For k = 1, . . . , n, and x ∈ R, it holds

FX(k)(x) = P(X(k) ≤ x) =

n∑
j=k

(
n

j

)
F j(x)(1− F (x))n−j . (4)

By using the identity

n∑
j=k

(
n

j

)
pj(1− p)n−j =

n!

(k − 1)!(n− k)!

∫ p

0

yj−1(1− y)n−jdy, 0 < p < 1,

we obtain the new identity for FX(k)

FX(k)(x) =
n!

(k − 1)!(n− k)!

∫ F (x)

0

yj−1(1− y)n−jdy. (5)

If X is a continuous random variable with density function f , then from (5) the density
function of X(k) can be determined as follows.

Corollary 2.2. If X is absolutely continuous, then for k = 1, . . . , n, the density function
of X(k) is

fX(k)(x) =
n!

(k − 1)!(n− k)!
F k(x)(1− F (x))n−kf(x). (6)

Denote f1:n the joint probability density of all n order statistics. Then we have (see,
e.g., [1])

f1:n(x1, x2, . . . , xn) = n!f(x1)f(x2) · · · f(xn)1{−∞<x1<x2<···<xn<∞}. (7)

Now consider a special case when X is uniformly distributed random variable U on (0, 1).
Then we get the marginal probability density of U(k) and joint probability density of
U(1), U(2), . . . , U(n).
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Proposition 2.3. (i) For k = 1, . . . , n, the marginal density of U(k) is

fU(k)(uk) =
n!

(k − 1)!(n− k)!
uk−1
k (1− uk)

n−k, 0 < uk < 1.

(ii) The joint probability density of U(1), U(2), . . . , U(n) is

f1:n(u1, u2, ..., un) = n!1{0<u1<u2<...<un<1}.

3 Main results

In this section, we give a necessary and sufficient condition for n-dimensional positive ran-
dom variables (X1, X2, . . . , Xn) to be Schur-constant. More precisely, we provide a neces-
sary and sufficient condition such that the distribution probability of a non-negative vector
random variable can be represented via order statistics of the uniform distribution. Then,
we derive the fundamental property of the class of Schur-constant distributions and some
useful properties.

Let U be a uniformly distributed random variable on (0, 1) and V an arbitrary positive
random variable independent of U . Denote U(1), U(2), . . . , U(n−1) the order statistics of U .
We have the following result.

Theorem 3.1. Let (X1, X2, ..., Xn) be a positive random vector, and (U1, U2, · · · , Un) be
independent and uniformly distributed on (0, 1). Then there exists a positive random variable
V independent of (U1, U2, . . . , Un) such that

(X1, X2, ..., Xn)
(d)
= (U(1)V, (U(2) − U(1))V, . . . , (1− U(n−1))V ), (8)

if and only if the following representation holds

P(X1 ∈ dt1,X2 ∈ dt2, ..., Xn ∈ dtn)

= (n− 1)!dt1dt2 · · · dtn−1ν(t1 + · · ·+ tn−1, dtn), (9)

where ν is a positive, finite measure on R+ satisfying

ν(t, B) = µ(t+B), t+B := {t+ b : b ∈ B},

for all Borel set B on R+, whilst µ is some measure on R+. Moreover, if (9) holds, then∫ ∞

0

xn−1µ(dx) = 1.

Proof. Assume (X1, X2, ..., Xn)
(d)
= (U(1)V, (U(2)−U(1))V, . . . , (1−U(n−1))V ). Let FV denote

the distribution function of V . For any bounded and positive measurable function g on Rn,
we have

E(g((X1, X2, ..., Xn)) = E(g(U(1)V, (U(2) − U(1))V, ..., (1− U(n−1))V ))
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=

∫
Rn

+

g(u1v, (u2 − u1)v, ...,(1− un−1)v)(n− 1)!

1{0≤u1<u2<...<un−1≤1}du1du2...dun−1FV (dv).

Change of variables a1 = u1v, a2 = (u2 − u1)v, . . . , an−1 = (un−1 − un−2)v and an =
(1− un−1)v yields

v =

n∑
k=1

ak,

and

uk =

∑k
i=1 ai∑n
j=1 aj

, k = 1, . . . , n− 1.

We have the partial derivatives

∂u1

∂a1
=

∑n
k=2 ak
v2

,
∂u1

∂a2
=

∂u1

∂a3
= · · · = ∂u1

∂an−1
=

∂u1

∂an
= −a1

v2
,

∂u2

∂a1
=

∂u2

∂a2
=

∑n
k=3 ak
v2

,
∂u2

∂a3
= · · · = ∂u2

∂an−1
=

∂u2

∂b
= − (a1 + a2)

v2
,

· · ·

∂un−1

∂a1
= · · · = ∂un−1

∂an−1
=

an
v2

,
∂un−1

∂an
= −

∑n−1
k=1

v2
,

∂v

∂a1
=

∂v

∂a2
= · · · = ∂v

∂an−1
=

∂v

∂an
= 1.

and, hence, the Jacobian determinant

|J | = 1

vn−1 .

So we obtain

E(g(X1, X2, · · · , Xn))

=

∫
Rn

+

(n− 1)!g(a1, a2, .., an−1, an)da1da2 · · · dan−1ν(a1 + a2 + · · ·+ an−1, dan),

where

ν(a1 + a2 + · · ·+ an−1, dan) :=
1

vn−1
FV (a1 + a2 + · · ·+ an−1 + dan).

Consequently, the identity (9) holds. Moreover, putting µ(dv) := v−(n−1)FV (dv), it yields∫ ∞

0

xn−1µ(dx) = 1.

Now assume that the distribution of random vector (X1, X2, · · · , Xn) has the represen-
tation (9), i.e.,

P(X1 ∈ dt1, X2 ∈ dt2, · · · , Xn ∈ dtn) = (n− 1)!dt1dt2 · · · dtn−1ν(t1 + · · ·+ tn−1, dtn).
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For every 0 < ti ⩽ 1, i = 1, . . . , n− 1, tn > 0, we have

P(
X1∑n
k=1 Xk

⩽ t1,
X2∑n
k=1 Xk

⩽ t2, . . . ,
Xn−1∑n
k=1 Xk

⩽ tn−1,

n∑
k=1

Xk ⩽ tn)

= (n− 1)!

∫
D

dx1dx2 · · · dxn−1ν(x1 + x2 + · · ·+ xn−1, dxn),

where

D = {(x1, x2, . . . , xn) :
xi∑n

k=1 xk
⩽ ti,

n∑
k=1

xk ⩽ tn, ti ∈ (0, 1), i = 1, 2, . . . , n− 1}.

Putting

ui =
xi∑n

k=1 xk
, i = 1, . . . , n− 1,

and

un =

n∑
k=1

xk,

we get

xi = uiun, i = 1, . . . , n− 1,

xn = (1−
n−1∑
k=1

uk)un,

and the Jacobian determinant
|J | = un−1

n .

So we have

P(
X1∑n
k=1 Xk

⩽ t1,
X2∑n
k=1 Xk

⩽ t2, · · · ,
Xn−1∑n
k=1 Xk

⩽ tn−1,

n∑
k=1

Xk ⩽ tn)

=

∫
D1

(n− 1)!1{u1<u2<···<un−1}du1du2 · · · dun−1u
n−1
n µ(dun), (10)

where

D1 = {(u1, u2, · · · , un) :0 < u1 ⩽ t1, 0 < u2 − u1 ⩽ t2, · · · ,
0 < un−1 − un−2 ⩽ tn−1, 0 < un ⩽ tn}.

From (10) we see that

(
X1∑n
k=1 Xk

,
X2∑n
k=1 Xk

, . . . ,
Xn−1∑n
k=1 Xk

)
(d)
= (U(1), U(2) − U(1), . . . , U(n−1) − U(n−2)).

The random variable V :=
∑n

k=1 Xk is independent of ( X1∑n
k=1 Xk

, X2∑n
k=1 Xk

, . . . , Xn−1∑n
k=1 Xk

),

and hence, V is independent of uniformly distributed U on (0, 1).
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The theory of n-times monotone functions plays a crucial role in studying continuous
distribution functions. A function f(x) defined on R+ is said to be n-times monotone,
where n is an integer and n ≥ 2, if it is differentiable there up to the order n− 2, and the
derivatives

(−1)kf (k)(x) ≥ 0, k = 0, . . . , n− 2,

and further (−1)n−2f (n−2) is non-increasing and convex. Williamson [18] provides a char-
acterization of an n-times monotone function as an integral transform. This transform is
called the Williamson n-transform, denote by Wn.

Lemma 3.2. A function f defined on R+ is n-times monotone, n ≥ 2 if and only if for all
x > 0, there exists a positive measure ν such that

f(x) = Wnν(x) :=

∫ ∞

0

[(
t− x

)
+

]n−1
ν(dt),

where (u)+ ≡ max(u, 0).

The following proposition provides a connection between Schur-constant distribution
and n-times monotone functions (see, e.g.,[9], and see also [13, Lemma 3.2]).

Proposition 3.3. A function S on R+ is a survival function of a Schur-constant vector
(X1, . . . , Xn) if and only if S is n-times monotone, e.g., (−1)kS(k)(x) ≥ 0, k = 0, . . . , n−
2,, and (−1)n−2S(n−2) is non-increasing and convex.

In the following theorem we show that the class of vector random variables {(U(1)V, (U(2)−
U(1))V, . . . , (1 − U(n−1))V )} coincides with the class of Schur-constant. This result is the
fundamental property of the class of Schur-constant distributions. It can be found in, e.g.,
[7, Theorem 2.1] and [10, Proposition 3.2, 3.3]. Section 3 in [10] also shows that the Schur-
constant distributions are exactly the ℓ1-norm symmetric distributions. However, by using
Theorem 3.1 we give here a new proof for this result.

Denote F̄ the survival function of random variables X1, X2, . . . , Xn, i.e.,

F̄ (x1, x2, . . . , xn) := P(X1 > x1, X2 > x2, . . . , Xn > xn).

Theorem 3.4. The positive random vector X = (X1, X2, . . . , Xn) is Schur-constant if and
only if for every U1, . . . , Un independent and uniformly distributed on (0, 1) there exists a
positive random variable V independent of U1, . . . , Un such that

(X1, X2, ..., Xn)
(d)
= (U(1)V, (U(2) − U(1))V, . . . , (1− U(n−1))V ), (11)

where U(1), . . . , U(n) are the order statistics associated with U1, . . . , Un.

Proof. Assume that (X1, X2, . . . , Xn) has the representation (11). From Theorem 3.1 we
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have, for every xi > 0, i = 1, . . . , n

P(X1 > x1, X2 > x2, . . . , Xn > xn)

= (n− 1)!

∫ ∞

x1

du1

∫ ∞

x2

du2 · · ·
∫ ∞

xn−1

dun−1

∫ ∞

xn

ν(u1 + u2 + · · ·+ un−1, dun)

= (n− 1)!

∫ ∞

x1

du1

∫ ∞

x2

du2 · · ·
∫ ∞

xn−1

dun−1

∫ ∞

u1+u2+···+un−1+xn

µ(dun)

= (n− 1)!

∫
(
∑n

k=1 xk,∞)

µ(dun)

∫
C

du1du2 . . . dun−1,

where

C = {(u1, u2, . . . , un−1) : u1 + u2 + · · ·+ un−1 < un − xn, xi < ui, i = 1, . . . n− 1}

So we get

P(X1 > x1, X2 > x2, . . . , Xn > xn) =

= (n− 1)!

∫
(
∑n

k=1 xk,∞)

(un −
∑n

k=1 xk)
n−1

(n− 1)!
µ(dun)

=

∫
(
∑n

k=1 xi,∞)

(un −
n∑

k=1

xk)
n−1µ(dun). (12)

The identity (12) can be written as follows

P(X1 > x1, X2 > x2, . . . , Xn > xn) =

∫ ∞

0

(
1−

∑n
k=1 xk

v

)n−1

+

vn−1µ(dv),

and, hence, we see that Schur-constant vector X is the Williamson n-transform Wn of the
random variable V , i.e.,

F̄ (x1, x2, . . . , xn) = WnFV (

n∑
i=1

xi) =

∫ ∞

0

(
1−

∑n
k=1 xi

t

)n−1

+

FV (dt). (13)

We refer to [10, Section 3] for more discussions regarding the connections between Schur-
constant distributions and Williamson n-transforms.

Now assume that (X1, . . . , Xn) is Schur-constant with the joint distribution F̄ and the
generator S. Then S is n-times monotone. By Proposition 3.3 and Lemma 3.2 there is a
measure µ such that

F̄ (x1, x2, . . . , xn) = S(x1 + x2 + · · ·+ xn) =

∫ ∞

0

(
1−

∑n
k=1 xk

t

)n−1

+
tn−1µ(dt).

Consequently, F̄ is also the joint survival distribution function of the random vector

(U(1)V, (U(2) − U(1))V, . . . , (1− U(n−1))V ),

where, V has distribution FV (x) =
∫∞
x

tn−1µ(dt).
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Remark 3.5. From (13), wee see that the generator function S can be represented in terms
of the distribution of the random variable V as follows

S(x) = E
[(

1− x

V

)n−1

+

]
, x ≥ 0.

Now consider the partial sums

Sk :=

k∑
i=1

Xi, Tk :=

n∑
i=k+1

Xi.

Then we obtain the Laplace transform of Sk and Tk.

Theorem 3.6. Let (X1, X2, . . . , Xn) be Schur-constant vector. Then for all α ̸= β, it holds

E(e−αSk−βTk) =
(n− 1)!

(k − 1)!(n− k − 1)!(α− β)n−1

∫ α

β

E(e−tV )(α− t)n−k−1(t− β)k−1dt (1)

for all k = 1, 2, . . . , n− 1.

Proof. Since (X1, X2, . . . , Xn) is Schur-constant then

(X1, X2, . . . , Xn)
(d)
= (U(1)V, (U(2) − U(1))V, . . . , (1− U(n−1))V ).

Hence

Sk =

k∑
i=1

Xi = U(k)V,

Tk =

n∑
i=k+1

Xi = (1− U(k))V.

Density distribution of Uk:n−1 is given by

fk:n−1(x) =
(n− 1)!

(k − 1)!(n− k − 1)!
xk−1(1− x)n−k−1, 0 ⩽ x ⩽ 1.

So we get

E(e−αSk−βTk) = E
(
e−V [(α−β)U(k)+β]

)
=

(n− 1)!

(k − 1)!(n− k − 1)

∫ 1

0

E(e−V [(α−β)x+β])xk−1(1− x)n−k−1dx.

Putting

t = (α− β)x+ β,

we obtain

E(e−αSk−βTk) =
(n− 1)!

(k − 1)!(n− k − 1)!(α− β)n−1

∫ α

β

E(e−tV )(α− t)n−k−1(t− β)k−1dt.
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