Families of isotropic subspaces in a symplectic Z/2-vector space by George Lusztig

Abstract

For a symplectic vector space over $\mathbf{Z}/2$ we give a non-inductive definition of a family of isotropic subspaces with remarkable properties.

Key Words: Symplectic vector space, isotropic subspace. 2020 Mathematics Subject Classification: 20G99.

0 Introduction

0.1. Let $F = \mathbb{Z}/2$ be the field with two elements. Let \overline{V} be an *F*-vector space of finite dimension $2n \ge 2$ endowed with a nondegenerate symplectic form $\langle \rangle$ and with a collection of vectors $\overline{e}_0, \overline{e}_1, \overline{e}_2, \ldots, \overline{e}_{2n}$ such that

 $<\bar{e}_0, \bar{e}_1>=<\bar{e}_1, \bar{e}_2>=\ldots=<\bar{e}_{2n-1}, \bar{e}_{2n}>=<\bar{e}_{2n}, \bar{e}_0>=1,$

 $\langle \bar{e}_1, \bar{e}_0 \rangle = \langle \bar{e}_2, \bar{e}_1 \rangle = \ldots = \langle \bar{e}_{2n}, \bar{e}_{2n-1} \rangle = \langle \bar{e}_0, \bar{e}_{2n} \rangle = 1$

and $\langle \bar{e}_i, \bar{e}_j \rangle = 0$ for all other pairs i, j. (Such a collection is called a "circular basis" in [3].)

In [3] we have introduced a family $\mathcal{F}(\bar{V})$ of isotropic subspaces of \bar{V} with remarkable properties:

There is a unique bijection $\mathcal{F}(\bar{V}) \xrightarrow{\sim} \bar{V}$ such that any $x \in \bar{V}$ is contained in the corresponding subspace of \bar{V} . The characteristic functions of the various subspaces in $\mathcal{F}(\bar{V})$ form a new basis of the complex vector space $\bar{V}^{\mathbf{C}}$ of functions $\bar{V} \to \mathbf{C}$ which is related to the obvious basis of $\bar{V}^{\mathbf{C}}$ by an upper triangular matrix with 1 on diagonal (in some partial order \leq on $\mathcal{F}(\bar{V})$).

(In fact the collection $\mathcal{F}(\bar{V})$ was already introduced in [2], but in a less symmetric form.) A further property of $\mathcal{F}(\bar{V})$ was found in [3], namely that the matrix of the Fourier transform $\bar{V}^{\mathbf{C}} \to \bar{V}^{\mathbf{C}}$ with respect to the new basis is upper triangular with ± 1 on diagonal. The proof of this property was based on the observation that the new basis admits a dihedral symmetry which was not visible in the definition of [2].

In this paper we give a new non-inductive definition of $\mathcal{F}(\bar{V})$ which is visibly compatible with the dihedral symmetry (the definition of [2] has no such a symmetry property; the definition in [3] did have the symmetry property but was inductive). We also give a formula for the bijection $\mathcal{F}(\bar{V}) \xrightarrow{\sim} \bar{V}$ above which is clearly compatible with the dihedral symmetry. (See Theorem 1.4.)

Let V be an F-vector space with basis e_0, e_1, \ldots, e_{2n} such that \overline{V} is the quotient of V by the line $F(e_0 + e_1 + \ldots + e_{2n})$ and \overline{e}_i is the image of e_i under the obvious map $V \to \overline{V}$. In Section 4 we define an analogue $\widetilde{\mathcal{F}}(V)$ of $\mathcal{F}(\overline{V})$ which is a refinement of $\mathcal{F}(\overline{V})$ and has several properties of $\mathcal{F}(\overline{V})$. In Sections 5 - 7 we study a modification of the family $\mathcal{F}(\bar{V})$ which plays the same role in the theory of unipotent representations of orthogonal groups over a finite field as that played by $\mathcal{F}(\bar{V})$ in the analogous theory for symplectic groups over a finite field.

1 Statement of the Theorem

1.1. Let V be an F-vector space endowed with a symplectic form $\langle , \rangle : V \times V \to F$ and a map $e: S \to V, s \mapsto e_s$ where S is a finite set. Let \mathfrak{E} be the set of unordered pairs $s \neq s'$ in S such that $\langle e_s, e_{s'} \rangle = 1$. This is the set of edges of a graph with set of vertices S. For any $I \subset S$ we set $e_I = \sum_{s \in I} e_s \in V$ and we denote by \underline{I} the full subgraph of (S, \mathfrak{E}) whose set of vertices is I. Let \mathcal{I} be the set of all $I \subset S$ such that \underline{I} is a graph of type A_m for some $m \geq 1$. We have $\mathcal{I} = \mathcal{I}^0 \sqcup \mathcal{I}^1$ where $\mathcal{I}^0 = \{I \in \mathcal{I}; |I| = 0 \mod 2\}, \mathcal{I}^1 = \{I \in \mathcal{I}; |I| = 1 \mod 2\}$. For I, I' in \mathcal{I}^1 we write $I \prec I'$ whenever $I \subseteq I'$ and $\underline{I' - I}$ is disconnected. For I, I' in \mathcal{I}^1 we write $I \cap I' = \emptyset$ and $\underline{I \cup I'}$ is disconnected. For $I \in \mathcal{I}^1$ let I^{ev} be the set of all $s \in I$ such that $I - \{s\} = I' \sqcup I'', \text{ with } I' \in \mathcal{I}^1, I' \in \mathcal{I}^1, I' \spadesuit I''$. Let $I^{odd} = I - I^{ev}$. We have $|I^{ev}| = (|I| - 1)/2$.

1.2. Let R be the set whose elements are finite unordered sequences of objects of \mathcal{I}^1 . For $B \in R$ let L_B be the subspace of V generated by $\{e_I; I \in B\}$; for a subspace L of V let $B_L = \{I \in \mathcal{I}^1; e_I \in L\} \subset R$. For $s \in S, B \in R$ we set

$$g_s(B) = |\{I \in B; s \in I\}|$$

(here |?| denotes the number of elements of ?) and

$$\epsilon_s(B) = (1/2)g_s(B)(g_s(B) + 1) \in F.$$

For $B \in R$ we set

$$\epsilon(B) = \sum_{s \in S} \epsilon_s(B) e_s \in V.$$

For $B \in R$ we set $\operatorname{supp}(B) = \bigcup_{I \in B} I \subset S$.

Let $\phi(V)$ be the set consisting of all $B \in R$ such that $(P_0), (P_1)$ below hold.

 (P_0) If $I \in B, I' \in B$, then I = I', or $I \blacklozenge I'$, or $I \prec I'$, or $I' \prec I$.

 (P_1) Let $I \in B$. There exist I_1, I_2, \ldots, I_k in B such that $I^{ev} \subset I_1 \cup I_2 \cup \ldots \cup I_k$ (disjoint union), $I_1 \prec I, I_2 \prec I, \ldots, I_k \prec I$.

We say that (V, <, >, e) is *perfect* if properties (i)-(iv) below hold.

(i) If $B \in \phi(V)$, then $\{e_I; I \in B\}$ is a basis of $L := L_B$; moreover, $B = B_L$.

(ii) For any $B \in \phi(V)$ we have $\epsilon(B) \in L_B$. Hence ϵ restricts to a map $\phi(V) \to V_0$ (denoted again by ϵ) where $V_0 = \bigcup_{B \in \phi(V)} L_B \subset V$.

(iii) The map $\epsilon : \phi(V) \to V_0$ is a bijection.

(iv) If B, B' in $\phi(V)$ are such that $\epsilon(B') \in L_B$, then $g_s(B') \leq g_s(B)$ for any $s \in S$.

For B', B in $\phi(V)$ we say that $B' \leq B$ if there exist $B_0, B_1, B_2, \ldots, B_k$ in $\phi(V)$ such that $B_0 = B', B_k = B, \epsilon(B_0) \in L_{B_1}, \epsilon(B_1) \in L_{B_2}, \ldots, \epsilon(B_{k-1}) \in L_{B_k}$. We show:

(a) If (V, <, >, e) is perfect, then \leq is a partial order on $\phi(V)$. Assume that we have elements $B_0, B_1, \ldots, B_k, B'_0, B'_1, \ldots, B'_l$ in $\phi(V)$ such that $\epsilon(B_0) \in L_{B_1}, \epsilon(B_1) \in L_{B_2}, \dots, \epsilon(B_{k-1}) \in L_{B_k}, \\ \epsilon(B'_0) \in L_{B'_1}, \epsilon(B'_1) \in L_{B'_2}, \dots, \epsilon(B'_{l-1}) \in L_{B'_l},$

and $B_0 = B'_l, B'_0 = B_k$. We must prove that $B_0 = B'_0$. Using (iv) and our assumptions we have for any $s \in S$:

 $g_s(B_0) \le g_s(B_1) \le g_s(B_2) \le \dots \le g_s(B_k) = g_s(B'_0),$ $g_s(B'_0) \le g_s(B'_1) \le g_s(B'_2) \le \dots \le g_s(B'_l) = g_s(B_0).$

 $g_s(D_0) \leq g_s(D_1) \leq g_s(D_2) \leq \dots \leq g_s(D_l) - g_s(D_0).$ It follows that $g_s(B_0) \leq g_s(B'_0), g_s(B'_0) \leq g_s(B_0)$, so that $g_s(B_0) = g_s(B'_0)$. Since this holds

for any s, we see that $\epsilon(B_0) \leq g_s(B_0), g_s(B_0) \leq g_s(B_0)$, so that $g_s(B_0) = g_s(B_0)$. Since this holds for any s, we see that $\epsilon(B_0) = \epsilon(B'_0)$. Using the injectivity of ϵ (see (iii)), we deduce that $B_0 = B'_0$, as desired.

1.3. We will consider three cases:

(a) $V, <, >, e : S \to V$ are such that $\{e_s; s \in S\}$ is a basis of V and (S, \mathfrak{E}) is a graph of type $A_{N-1}, N \in \{3, 5, 7, \ldots\}$;

(b) $V, <, >, e : S \to V$ are such that $\{e_s; s \in S\}$ is a basis of V and (S, \mathfrak{E}) is a graph of affine type $A_{N-1}, N \in \{3, 5, 7, \ldots\}$;

(c) $V, <, >, e : S \to V$ in (b) are replaced by $\overline{V} = V/Fe_S$, by the symplectic form induced by <, > (denoted again by <, >), and by $\pi e : S \to \overline{V}$, where $\pi : V \to \overline{V}$ is the obvious map.

In cases (b),(c) we note that the automorphism group of the graph (S, \mathfrak{E}) is a dihedral group Di_{2N} of order 2N. It acts naturally on V in (b) by permutations of the basis; this induces an action of Di_{2N} on \bar{V} in (c).

Let $I \subset S$; in cases (b),(c) we assume that $I \neq S$. There is a well defined subset c(I) of \mathcal{I} such that $I' \spadesuit I''$ for any $I' \neq I''$ in c(I) and $I = \bigsqcup_{I' \in c(I)} I'$. Note that $\{\underline{I}'; I' \in c(I)\}$ are the connected components of the graph \underline{I} .

We now state the following result.

Theorem 1.4. In each of the cases 1.3(a), (b), (c), (V, <, >, e) is perfect.

1.5. In case 1.3(a), Theorem 1.4 is contained in [1]. Let $\mathcal{F}(V)$ be the set of subspaces of V of the form L_B for some $B \in \phi(V)$. Note that $B \mapsto L_B$ is a bijection $\phi(V) \xrightarrow{\sim} \mathcal{F}(V)$.

We can write the elements of S as a sequence $s_1, s_2, \ldots, s_{N-1}$ in which any two consecutive elements are joined in the graph (S, \mathfrak{E}) . Let $I \subset S$. Let c(I) be as in 1.3. Let $c(I)^{0+}$ (resp. $c(I)^{0-}$) be the set of all $I' \in c(I)$ such that $I' = \{s_k, s_{k+1}, \ldots, s_l\}$ where k is even, l is odd (resp. k is odd, l is even). Let V_0 be the subset of V consisting of all e_I where $I \subset S$ satisfies $|c(I)^{0+}| = |c(I)^{0-}|$. From [1] it is known that V_0 coincides with the subset of V appearing in 1.2(ii) that is,

(a) $\cup_{L \in \mathcal{F}(V)} L = V_0.$

2 The case 1.3(c)

2.1. In this section we assume that we are in case 1.3(c). For $s \in S$ we set $\bar{e}_s = \pi(e(s))$. For $I \subset S$ we set $\bar{e}_I = \sum_{s \in I} \bar{e}_s$. Note that $\{\bar{e}_s; s \in S\}$ is a circular basis of \bar{V} (in the sense of [3]) and to this we can attach a collection $\mathcal{F}(\bar{V})$ of subspaces of \bar{V} as in [3]. We recall how this was done. For any $s \in S$ we set

$$\hat{s} = \{s' \in S; <\bar{e}_s, \bar{e}_{s'} >= 1\} \cup \{s\} \subset S.$$

We have $|\hat{s}| = 3$. We set $\bar{e}_s^{\perp} = \{x \in \bar{V}; \langle x, \bar{e}_s \rangle = 0\}$ and $\bar{V}_s = \bar{e}_s^{\perp}/F\bar{e}_s$. This is a symplectic F-vector space with circular basis $\{\bar{e}_{s'}; s' \in S - \hat{s}\} \sqcup \{\bar{e}_{\hat{s}}\}$. Thus the analogue of S when \bar{V} is replaced by \bar{V}_s is $S_s = (S - \hat{s}) \sqcup \{\hat{s}\}$ (a set with |S| - 2 elements). Let $\bar{p}_s : \bar{e}_s^{\perp} \to \bar{V}_s$ be the obvious linear map. We define a collection $\mathcal{F}(\bar{V})$ of subspaces of \bar{V} by induction on N. If N = 3, $\mathcal{F}(\bar{V})$ consists of 0 and of $\bar{p}_s^{-1}(0)$ for various $s \in S$. If $N \ge 5$, $\mathcal{F}(\bar{V})$ consists of 0 and of $\bar{p}_s^{-1}(L')$ for various $s \in S$ and various $L' \in \mathcal{F}(\bar{V}_s)$ (which is defined by the induction hypothesis). In [3], $\mathcal{F}(\bar{V})$ is also identified with a collection of subspaces of \bar{V} introduced in [2] in terms of a chosen element $t \in S$. From this identification we see that:

(a) if $L \in \mathcal{F}(\bar{V})$ and $B_L^t := \{I \in \mathcal{I}; I \subset S - \{t\}, \bar{e}_I \in L\}$, then $\{\bar{e}_I; I \in B_L^t\}$ is an *F*-basis of *L*, so that $L = L_{B_L^t}$.

Now if $I \in \mathcal{I}$, then $\tilde{S}^{L} - I \in \mathcal{I}$ and we have $\bar{e}_{I} = \bar{e}_{S-I}$. Moreover, exactly one of I, S - I is contained in $S - \{t\}$ and exactly one of I, S - I is in \mathcal{I}^{1} . We deduce that:

(b) If $L \in \mathcal{F}(\bar{V})$, and

$$B_L := \{ I \in \mathcal{I}^1; \bar{e}_I \in L \} = \{ I \in \mathcal{I}^1; I \in B_L^t \} \sqcup \{ I \in \mathcal{I}^1; S - I \in B_L^t \}$$

then $\{\bar{e}_I; I \in B_L\}$ is an *F*-basis of *L*, so that $L = L_{B_L}$.

2.2. We show that for $B \in R$:

(a) we have $B \in \phi(\overline{V})$ if and only if $L_B \in \mathcal{F}(\overline{V})$.

The proof is analogous to that of the similar result in case 1.3(a) given in [1]. We argue by induction on N. If N = 3, (a) is easily verified. In this case, B is either \emptyset or it is of the form $\{s\}$ for some $s \in S$. We now assume that $N \geq 5$. For $s \in S$ we denote by \mathcal{I}_s^1, R_s the analogues of \mathcal{I}^1, R when S is replaced by S_s (see 2.1). For $J \in \mathcal{I}_s^1$ we write $\bar{e}_J \in \bar{V}_s$ for the analogue of $\bar{e}_I \in \bar{V}, I \in \mathcal{I}^1$. We have

$$\bar{p}_s^{-1}(\bar{e}_J) = \{\bar{e}_I, \bar{e}_I + \bar{e}_s\}$$

for a well defined $I \in \mathcal{I}^1$ such that $s \notin I$; we set $I = \xi_s(J)$. There is a well defined map $\tau_s : R_s \to R, B'_1 \mapsto B_1$ where B_1 consists of $\{s\}$ and of all $\xi_s(J)$ with $J \in B'_1$. From the definitions we see that (assuming that $B'_1 \in R_s$ and $B_1 = \tau_s(B'_1)$), the following holds.

(b) B'_1 satisfies (P_0) if and only if B_1 satisfies (P_0) ; B'_1 satisfies (P_1) if and only if B_1 satisfies (P_1) .

Assume now that B is such that $L := L_B \in \mathcal{F}(\overline{V})$, so that $B = B_L$. We show that B satisfies $(P_0), (P_1)$. If $B = \emptyset$, this is obvious. If $B \neq \emptyset$, we have $L = \overline{p}_s^{-1}(L')$ where $s \in S, L' \in \mathcal{F}(\overline{V}_s)$. From the definition we have $\tau_s(B_{L'}) = B_L$. By the induction hypothesis, $B_{L'}$ satisfies $(P_0), (P_1)$; using (b), we see that $B = B_L$ satisfies $(P_0), (P_1)$.

Conversely, assume that B satisfies $(P_0), (P_1)$. We show that $B = B_L$ for some $L \in \mathcal{F}(\bar{V})$. If $B = \emptyset$ this is obvious. Thus we can assume that $B \neq \emptyset$. Let $I \in B$ be such that |I| is minimum. If $s \in I^{ev}$ (see 1.1) then by (P_1) we can find $I' \in B$ with $s \in I', |I'| < |I|$, a contradiction. We see that $I^{ev} = \emptyset$. Thus, $I = \{s\}$ for some $s \in S$. Using (P_0) and $\{s\} \in B$, we see that for any $I' \in B - \{s\}$ we have $\{s\} \prec I'$ or $I' \spadesuit \{s\}$. It follows that $B = \tau_s(B')$ for some $B' \in R_s$. From (b) we see that B' satisfies $(P_0), (P_1)$. From the induction hypothesis we see that $B' = B_{L'}$ for some $L' \in \mathcal{F}(\bar{V}_s)$. Let $L = \bar{p}_s^{-1}(L')$. We have $L \in \mathcal{F}(\bar{V})$ and $B = B_L$. This proves (a).

We see that we have a bijection

(c) $\phi(\bar{V}) \xrightarrow{\sim} \mathcal{F}(\bar{V}), B \mapsto L_B.$

Using now 2.1(b) we see that 1.2(i) holds for any $B \in \phi(\overline{V})$.

2.3. We now fix $t \in S$. Let $B \in \mathcal{F}(\bar{V})$, let $L = L_B \in \mathcal{F}(\bar{V})$ and let $B^t = B_L^t$ (see 2.1). For any $s \in S - \{t\}$ we set

$$f_s(B) = |\{I \in B^t \cap \mathcal{I}^1; s \in I\}| - |\{I \in B^t \cap \mathcal{I}^0; s \in I\}| - |B^t \cap \mathcal{I}^0|$$

where for any $m \in \mathbf{Z}$ we set $\underline{m} = 0$ if m is even, $\underline{m} = 1$ if m is odd. We also set

$$\epsilon'(B) = \sum_{s \in S - \{t\}} (1/2) f_s(B) (f_s(B) + 1) \bar{e}_s \in \bar{V}.$$

From [2], [3] we see using 2.2(c) that:

(a) we have $\epsilon'(B) \in L_B$ for any $B \in \phi(\bar{V})$ and $B \mapsto \epsilon'(B)$ defines a bijection $\epsilon' : \phi(\bar{V}) \xrightarrow{\sim} \bar{V}$.

2.4. We wish to rewrite the bijection $\epsilon': \phi(\bar{V}) \xrightarrow{\sim} \bar{V}$ without reference to $t \in S$. Recall that for any $B \in \phi(\bar{V})$ and any $s \in S$ we have

(a) $g_s(B) = |\{I \in B; s \in I\}| \in \mathbb{N}.$ Setting $\beta = |B^t \cap \mathcal{I}^0|$ where $B^t = B_L^t$, $L = L_B$ (see 2.1) we have (b) $g_t(B) = \beta.$ For $s \in S - \{t\}$ we show: (c) $f_s(B) = g_s(B) - \beta - \underline{\beta}$ that is,

$$|\{I \in B^t \cap \mathcal{I}^1; s \in I\}| - |\{I \in B^t \cap \mathcal{I}^0; s \in I\}| = |\{I \in B; s \in I\}| - \beta.$$

To prove this, we substitute $|\{I \in B; s \in I\}|$ by

$$|\{I \in B^t \cap \mathcal{I}^1; s \in I\}| + |\{I \in B^t \cap \mathcal{I}^0; s \notin I\}|.$$

We see that desired equality becomes

$$\begin{split} |\{I \in B^t \cap \mathcal{I}^1; s \in I\}| - |\{I \in B^t \cap \mathcal{I}^0; s \in I\}| \\ = |\{I \in B^t \cap \mathcal{I}^1; s \in I\}| + |\{I \in B^t \cap \mathcal{I}^0; s \notin I\}| - \beta \end{split}$$

which is obvious.

We shall prove the following formula for $\epsilon'(B)$:

(d.)
$$\epsilon'(B) = \sum_{s \in S} (1/2) g_s(B) (g_s(B) + 1) \bar{e}_s$$

Using (c) we have for $s \in S - \{t\}$:

$$(1/2)f_s(B)(f_s(B)+1) = (1/2)(g_s(B) - \beta - \underline{\beta})(g_s(B) - \beta - \underline{\beta} + 1) = (1/2)g_s(B)(g_s(B)+1) + H$$

where

$$H = (1/2)(g_s(B)(-2\beta - 2\underline{\beta}) + (\beta + \underline{\beta})^2 - \beta - \underline{\beta}).$$

Note that

$$-2\beta - 2\underline{\beta} = 0 \mod 4, (\beta + \underline{\beta})^2 = 0 \mod 4, -\beta - \underline{\beta} = -\beta(\beta + 1) \mod 4$$

hence $H = -\beta(\beta + 1) \mod 2$. Thus,

$$\begin{aligned} \epsilon'(B) &= \sum_{s \in S - \{t\}} (1/2) g_s(B) (g_s(B) + 1) \bar{e}_s + \sum_{s \in S - \{t\}} (1/2) g_t(B) (g_t(B) + 1) \bar{e}_s \\ &= \sum_{s \in S} (1/2) g_s(B) (g_s(B) + 1) \bar{e}_s. \end{aligned}$$

We have used that $\sum_{s \in S} \bar{e}_s = 0$. This proves (d).

From (d) and 2.3(a) we see that 1.2(ii),(iii) hold in our case with $\bar{V}_0 = \bar{V}$; moreover, ϵ' in 2.3 is the same as ϵ in 1.2.

2.5. From the results in [2],[3] it is known that if B, B' in $\phi(\overline{V})$ satisfy $\epsilon'(B') \in L_B$ (that is, $\epsilon(B') \in L_B$), then $f_s(B') \leq f_s(B)$ for any $s \in S - \{t\}$ and $|B_{L'}^t \cap \mathcal{I}^0| \leq |B_L^t \cap \mathcal{I}^0|$. (Notation of 2.1 with $L = L_B, L' = L_{B'}$.) We show that

(a) $g_s(B') \leq g_s(B)$ for any $s \in S$.

When s = t this follows from 2.4(b). We now assume that $s \neq t$. Using 2.4(c) we have

$$g_s(B') + g_t(B') + \underline{g_t(B')} \le g_s(B) + g_t(B) + \underline{g_t(B)}$$

hence it is enough to show that

(b) $g_t(B) - g_t(B') + \underline{g_t(B)} - \underline{g_t(B')} \ge 0.$ If $g_t(B') = g_t(B)$, then (b) is obvious. Assume now that $g_t(B') \neq g_t(B)$. As we have

seen above, we have $g_t(B') \leq g_t(B)$ hence $g_t(B) - g_t(B') \geq 1$. We have $\underline{g_t(B)} - \underline{g_t(B')} \in \{0, 1, -1\}$, hence (b) holds. This proves (a).

We see that 1.2(iv) holds in our case. Thus Theorem 1.4 is proved in case 1.3(c).

In the remainder of this paper we write $\bar{\epsilon}$ instead of $\epsilon : \phi(\bar{V}) \to \bar{V}$ to distinguish it from ϵ in cases 1.3(a),(b).

2.6. We note:

(a) If $B \in \phi(\overline{V})$, then $\operatorname{supp}(B) \neq S$. This holds since B has property (P_0) .

2.7. For $t \in S$ let V(t) be the *F*-subspace of *V* with basis $\{e_s; s \in S - \{t\}\}$. Then V(t) with this basis and the restriction of \langle , \rangle is as in 1.3(a). Let R(t) be the analogue of *R* when *V* in 1.3(a) is replaced by V(t); we have $R(t) \subset R$. Then $\phi(V(t))$ (a collection of elements of R(t)) is defined. From the definition we have $\phi(V(t)) \subset \phi(V)$. Now let $B \in \phi(V)$. By 2.6(a) we can find $t \in S$ such that $\operatorname{supp}(B) \subset S - \{t\}$. Now *B* satisfies $(P_0), (P_1)$ relative to V(t). Hence we have $B \in \phi(V(t))$. We see that

(a) $\phi(\overline{V}) = \bigcup_{t \in S} \phi(V(t)).$

From the definitions we see that for any $t \in S$ the following diagram is commutative:

$$\begin{array}{c|c} \phi(V(t)) & \longrightarrow \phi(\bar{V}) \\ & \epsilon \\ & \downarrow & \bar{\epsilon} \\ & \downarrow & V(t)_0 & \longrightarrow \bar{V} \end{array}$$

G. Lusztig

Here the left vertical maps are as in 1.2; the horizontal maps are the obvious inclusions.

2.8. We wish to compare the approach to $\phi(\bar{V})$ given in this paper with that in [4]. Let $S' = \mathfrak{E}$. We can regard S' as a set of vertices of a graph in which $\{s_1, s_2\} \in \mathfrak{E}, \{s_3, s_4\} \in \mathfrak{E}$ are joined whenever $|\{s_1, s_2\} \cap \{s_3, s_4\}| = 1$. Thus the set \mathfrak{E}' of edges of this graph is in obvious bijection with S. Note that the graph (S', \mathfrak{E}') is isomorphic to (S, \mathfrak{E}) hence the analogues $\bar{V}', \mathcal{I}'^1, \phi(\bar{V}')$ of $\bar{V}, \mathcal{I}^1, \phi(\bar{V})$ when (S, \mathfrak{E}) is replaced by (S', \mathfrak{E}') are defined. We can view \bar{V}' as the F-vector space consisting of all subsets of S of even cardinal in which the sum of X, X' is $(X \cup X') - (X \cap X')$, which is endowed with the symplectic form $X, X' \mapsto |X \cap X'| \mod 2$ and with a circular basis consisting of all two elements subsets of S which are in \mathfrak{E} . This circular basis is therefore indexed by S'. Now an object of \mathcal{I}'^1 is a subgraph of type A_{2k+1} $(k \ge 0)$ of S', that is with vertices of the form $\{s_1, s_2\}, \{s_2, s_3\}, \dots, \{s_{2k+1}, s_{2k+2}\}$; this is the same as a graph of type A_{2k+2} of S (with vertices $s_1, s_2, \ldots, s_{2k+2}$ and is completely determined by the pair of (distinct) elements s_1, s_{2k+2} . Thus \mathcal{I}'^1 can be identified with the set of two element subsets of S. In this way \mathcal{I}'^1 appears as a subset of \bar{V}' and each X in \mathcal{I}'^1 determines a subgraph of type A_{2k+2} $(k \ge 0)$ of S; the set of vertices of this subgraph is denoted by X. (We have $X \subset \overline{V}'$ and $X \subset \underline{X}$.)

Now $\phi(V')$ becomes the set of all unordered pairs X_1, X_2, \ldots, X_k of two element subsets of S such that $X_i \cap X_j = \emptyset$ for $i \neq j$ and such that for any $i \in \{1, 2, \ldots, k\}$ there exists $j_1 < j_2 < \ldots < j_s$ in $\{1, 2, \ldots, k\}$ such that

$$\underline{X_i} - X_i = \underline{X_{j_1}} \sqcup \underline{X_{j_2}} \sqcup \ldots \sqcup \underline{X_{j_s}}.$$

This approach appears in [4] (in a less symmetric and more complicated way) where S is taken to be $S_N = \{1, 2, ..., N\}$ with \mathfrak{E} consisting of $\{1, 2\}, \{2, 3\}, ..., \{N-1, N\}, \{N, 1\}$.

The set \mathcal{X}_{N-1} defined in [4, 1.3] is the same as $\phi(\bar{V}')$ although its definition is less symmetric and more complicated. Hence it is the same as $\phi(\bar{V})$ if \bar{V}, \bar{V}' are identified by $\bar{e}_s \mapsto \{s, s+1\}$ if $s \in \{1, 2, ..., N-1\}$ and $\bar{e}_N \mapsto \{N, 1\}$.

3 The case 1.3(b)

3.1. In this section we assume that we are in the setup of 1.3(b). Let V_0 be the set of all vectors of V which are of the form e_I with $I \subset S, I \neq \emptyset, I \neq S$ such that $|c(I) \cap \mathcal{I}^0|$ is even (here $c(I) \subset \mathcal{I}$ is as in 1.4); let V_1 be the set of all vectors of V which are of the form e_S or e_I with $I \subset S, I \neq \emptyset, I \neq S$ such that $|c(I) \cap \mathcal{I}^0|$ is odd. We have clearly:

(a) $V = V_0 \sqcup V_1$.

We show:

(b) If $I \subset S, I \neq \emptyset, I \neq S$, then $e_I \in V_0$ if and only if $e_{S-I} \in V_1$. In particular, $x \mapsto x + e_S$ is a bijection $V_0 \xrightarrow{\sim} V_1$.

We have $c(I) = \{I_1, I_3, \ldots, I_{2r-1}\}$, $c(S - I) = \{I_2, I_4, \ldots, I_{2r}\}$ and (if r > 1) we have $I_1 \cup I_2 \in \mathcal{I}, I_2 \cup I_3 \in \mathcal{I}, \ldots, I_{2r-1} \cup I_{2r} \in \mathcal{I}, I_{2r} \cup I_1 \in \mathcal{I}$; in particular, we have |c(I)| = |c(S - I)|. (This remains true also when r = 1.) Hence, setting $c^0(I) = c(I) \cap \mathcal{I}^0$, $c^1(I) = c(I) \cap \mathcal{I}^1$, we have

$$|c^{0}(I)| - |c^{0}(S - I)| = -|c^{1}(I)| + |c^{1}(S - I)|.$$

Modulo 2 this equals

$$\begin{split} |c^{1}(I)| + |c^{1}(S - X)| &= \sum_{I' \in c^{1}(I)} |I'| + \sum_{I' \in c^{1}(S - I)} |I'| \\ &= \sum_{I' \in c^{1}(I)} |I'| + \sum_{I' \in c^{1}(S - I)} |I'| + \sum_{I' \in c^{0}(I)} |I'| + \sum_{I' \in c^{0}(S - I)} |I'| \\ &= \sum_{I' \in c(I)} |I'| + \sum_{I \in c(S - I)} |I'| = |I| + |S - I| = |S|. \end{split}$$

Since |S| is odd, we see that

(c) $|c^0(I)| - |c^0(S - I)| = 1 \mod 2$ so that (b) holds.

We show:

(d) Let $\pi_0: V_0 \to \overline{V}$ be the restriction of $\pi: V \to \overline{V}$. Then π_0 is a bijection. Assume that $v \neq v'$ in V_0 satisfy $\pi(v) = \pi(v')$. If v = 0, then $v' \in \pi^{-1}(0) - \{0\}$ hence $v' = e_S$. But $e_S \notin V_0$, a contradiction. If $v \neq 0$, then $v = e_I, v' = e_{S-I}$ with $I \subset S, I \neq \emptyset, I \neq S$. Now $|c^0(I)|$ is even, $|c^0(S - I)|$ is even; but the sum of these numbers is odd by (c), a contradiction. We see that π_0 is injective.

From (b) we see that $|V_0| = |V_1|$ so that both of these numbers are equal to $(1/2)|V| = 2^{N-1}$. We see that π_0 is an injective map between two finite sets with 2^{N-1} elements; hence it is a bijection. This proves (d).

3.2. Note that the sets R, \mathcal{I} for this V and for \overline{V} in 1.3(c) are the same. Hence we have $\phi(V) = \phi(\overline{V})$. For $B \in \phi(V)$ we denote by M_B (resp. L_B) the subspace of V (resp. \overline{V}) generated by $\{e_I; I \in B\}$ (resp. $\{\overline{e}_I; I \in B\}$). Since $\{\overline{e}_I; I \in B\}$ is a basis of L_B , we see that $\{e_I; I \in B\}$ is a basis of M_B and that π restricts to an isomorphism $M_B \xrightarrow{\sim} L_B$. If $I \in \mathcal{I}$ is such that $e_I \in M_B$, then $\overline{e}_I = \pi(e_I) \in L_B$ and by 1.2(i) for \overline{V} we have $I \in B$. We see that $\phi(V)$ satisfies 1.2(i).

For $B \in \phi(V)$ we show:

(a) We have $M_B \subset V_0$ (notation of 3.1). Moreover, $\pi^{-1}(L_B) = M_B \oplus Fe_S$. By 2.7(a) we can find $t \in S$ such that $B \in \phi(V(t))$. By 1.5(a) the subspace of V (or V(t)) spanned by $\{e_I; I \in B\}$ is contained in $V(t)_0$. Thus, $M_B \subset V(t)_0$.

Let $x \in M_B$. We have $x \in V(t)_0$; since $e_S \notin V(t)$ we have $x = e_I$ for some $I \subset S$, $I \neq S$. By the definition of $V(t)_0$ we have $|c(I)^{0+}| = |c(I)^{0-}|$ (see 1.5) so that $|c^0(I)| = |c(I)^{0+}| + |c(I)^{0-}|$ is even and $e_I \in V_0$. Thus $x \in V_0$. This proves the first assertion of (a). For the second assertion we note that M_B is a hyperplane in $\pi^{-1}(L_B)$ and that $e_S \in \pi^{-1}(L_B)$. It remains to note that $e_S \notin M_B$ (since $e_S \notin V(t)$).

3.3. Consider the map $\epsilon : \phi(V) \to V$ in 1.2(ii). For $B \in \phi(V)$ we show:

(a) We have $\epsilon(B) \in M_B$. In particular we have $\epsilon(B) \in V_0$.

(See 3.2(a).) As in the proof of 3.2(a) we can assume that $B \in \phi(V(t))$ where $t \in S$. Using the commutative diagram in 2.7 we are reduced to property 1.2(ii) for V(t) which is already known.

We show:

(b) The map $\epsilon : \phi(V) \to V$ restricts to a bijection $\phi(V) \xrightarrow{\sim} V_0$.

The composition $\pi\epsilon: \phi(V) \to V$ is the same as the map ϵ for V hence is a bijection. It

follows that $\epsilon : \phi(V) \to V$ is injective and its image has exactly 2^{N-1} elements. Since this image is contained in V_0 (see (a)) and $|V_0| = 2^{N-1}$, we see that (b) holds.

We show:

(c) $V_0 = \bigcup_{B \in \phi(V)} M_B$

The right hand side is contained in the left hand side by 3.2(a). Now let $x \in V_0$. By [2] we have $\overline{V} = \bigcup_{L \in \mathcal{F}(\overline{V})} L$. Thus, we have $\pi(x) \in L_B$ for some $B \in \phi(V)$. It follows that we have $x \in \pi^{-1}(L_B) = M_B \oplus Fe_S$. It is enough to show that $x \in M_B$. If $x \notin M_B$, then $x + e_S \in M_B$ so that by (a) we have $x + e_S \in V_0$. Using 3.1(b) we then have $x \in V_1$, contradicting $x \in V_0$. This proves (c).

We see that $\phi(V)$ satisfies 1.2(ii),(iii).

Now let B, B' in $\phi(V)$ be such that $\epsilon(B') \in M_B$. Applying π we see that $\pi\epsilon(B') \in L_B$. Note that $\pi\epsilon$ is the same as ϵ relative to \bar{V} . Since $\phi(\bar{V})$ satisfies 1.2(iv), we see that $g_s(B') \leq g_s(B)$ for any $s \in S$. (The function g_s is the same for V as for \bar{V} .) Thus, 1.2(iv) holds for $\phi(V)$. This completes the proof of Theorem 1.4.

3.4. Let $B \in \phi(V) = \phi(\overline{V})$ be such that $B \neq \emptyset$. Then $\operatorname{supp}(B) \neq \emptyset$ and by 2.6 we have $\operatorname{supp}(B) \neq S$ hence the subset $c(\operatorname{supp}B)$ of \mathcal{I} is defined as in 1.3. As in the proof of 3.1(b) we have $c(\operatorname{supp}(B)) = \{I_1, I_3, \ldots, I_{2r-1}\}, c(S - \operatorname{supp}(B)) = \{I_2, I_4, \ldots, I_{2r}\}$ for some $r \ge 1$. Since $e_{I_1 \cup I_3 \cup \ldots I_{2r-1}} \in V_0$, from 3.1(b) we see that $e_{I_2 \cup I_4 \cup \ldots I_{2r}} \in V_1$, so that

(a) $|I_k|$ is even for some $k \in \{2, 4, ..., 2r\}$. In particular there exist s, s' in S such that $\{s, s'\} \in \mathfrak{E}$ and $\operatorname{supp}(B) \cap \{s, s'\} = \emptyset$.

We show:

(b) $|B| \le (|S| - 1)/2.$

A proof identical to that of [2, 1.3(g)] shows: (c) If $I \in B$ then $|\{I' \in B; I' \subset I\}| = (|I| + 1)/2$. Using (c) we have

$$\begin{aligned} |B| &= \sum_{I \in c(\text{supp}(B))} = \sum_{I \in \chi(\text{supp}B)} |\{I' \in B; I' \subset I\}| \\ &\leq \sum_{I \in \chi(\text{supp}B)} (|I|+1)/2 = (|I_1|+1)/2 + (|I_3|+1)/2 + \dots + (|I_{2r-1}|+1)/2 \\ &= (|I_1|+|I_3|+\dots+|I_{2r-1}|+r)/2 = (|S|-|I_2|-|I_4|-\dots-|I_{2r}|+r)/2 \leq |S|/2. \end{aligned}$$

Thus $|B| \leq |S|/2$. Since $|B| \in \mathbf{N}$ and |S| is odd we see that (b) holds. We show:

(d) We have |B| = (|S| - 1)/2 if and only if we have $|I_k| = 1$ for all $k \in \{2, 4, ..., 2r\}$ except for a single value of k for which $|I_k| = 2$.

Assume first that |B| = (|S|-1)/2. The proof of (c) shows that in our case $(|S|-|I_2|-|I_4|-\ldots-|I_{2r}|+r)/2$ is equal to (|S|-1)/2 or to |S|/2, hence $(|I_2|-1)+(|I_4|-1)+\ldots+(|I_{2r}|-1)$ is equal to 1 or 0. Thus either (d) holds or else we have $|I_k| = 1$ for all $k \in \{2, 4, \ldots, 2r\}$ without exception. This last possibility is excluded by (a). This proves one implication of (d). The reverse implication follows from the proof of (c).

3.5. Let **e** be a two element subset of *S* such that $\mathbf{e} \in \mathfrak{E}$. Let $[\mathbf{e}] = \bar{e}_{(S-\mathbf{e})^{odd}} \in \bar{V}$. We define a linear function $z_{\mathbf{e}} : \bar{V} \to F$ by $z_{\mathbf{e}}(\bar{e}_s) = 1$ if $s \in \mathbf{e}$, $z_{\mathbf{e}}(\bar{e}_s) = 0$ if $s \in S - \mathbf{e}$. Note that the radical of $\langle , \rangle |_{z_{\mathbf{e}}^{-1}(0)}$ is $F[\mathbf{e}]$.

Let $B \in \phi(V)$. The following result is used in [4, 3.5].

(a) If $[\mathbf{e}] \in L_B$ then supp $(B) \cap \mathbf{e} = \emptyset$ and |B| = (|S| - 1)/2.

Let $B^* \in \phi(\bar{V})$ be the subset of R consisting of the various $\{s\}$ with $s \in (S - \mathbf{e})^{odd}$. We have $[\mathbf{e}] = \epsilon(B^*)$ so that $B^* \leq B$. Using 1.2(iv), we see that $g_s(B^*) \leq g_s(B)$ for all $s \in S$. It follows that $g_s(B) \geq 1$ for all $s \in (S - \mathbf{e})^{odd}$. Thus $(S - \mathbf{e})^{odd} \subset \operatorname{supp}(B)$.

Let $\{I_{i_1}, I_{i_2}, \ldots, I_{i_l}\}$ be the subset of $\{I_2, I_4, \ldots, I_{2r}\}$ consisting of those I_k (k even) such that $|I_k| \geq 2$. This subset is nonempty by 3.4(a). Let $I \in \{I_{i_1}, I_{i_2}, \ldots, I_{i_l}\}$. We have $I \cap \operatorname{supp}(B) = \emptyset$ hence $I \cap (S - \mathbf{e})^{odd} = \emptyset$. If $I \neq \mathbf{e}$ then, since $|I| \in \{2, 4, 6, \ldots\}$ we have $I \cap (S - \mathbf{e})^{odd} \neq \emptyset$, a contradiction. Thus, $I = \mathbf{e}$. We see that $\mathbf{e} \cap \operatorname{supp}(B) = \emptyset$ that is $\operatorname{supp}(B) \subset S - \mathbf{e}$. Moreover, $\{I_{i_1}, I_{i_2}, \ldots, I_{i_l}\}$ consists of a single object namely \mathbf{e} . It remains to use 3.4(d).

Conversely,

(b) If $\operatorname{supp}(B) \cap \mathbf{e} = \emptyset$ and |B| = (|S| - 1)/2, then $[\mathbf{e}] \in L_B$.

Note that L_B is an isotropic subspace of $\zeta_{\mathbf{e}}^{-1}(0)$ and in fact a maximal one since dim $(L_B) = (\dim(\zeta_{\mathbf{e}}^{-1}(0))+1)/2$. But any maximal isotropic subspace of $\zeta_{\mathbf{e}}^{-1}(0)$ must contain the radical $F[\mathbf{e}]$. Thus, (b) holds.

4 Complements

4.1. In this subsection we assume that $(V, <>, e : S \to V)$ is as in 1.3(a), but the condition that $N \in \{3, 5, 7, \ldots\}$ is replaced by the condition that $N \in \{4, 6, 8, \ldots\}$. From the results in [1] one can deduce that $(V, <>, e : S \to V)$ is still perfect with V_0 having the same description as in 1.5. Let S' be a subset of S such that $S' \in \mathcal{I}$, |S'| = |S| - 1. Let V' be the subspace of V spanned by $\{e_s; s \in S'\}$. Then V' with the restriction of <, > to V' and with $S' \to V', s \mapsto e_s$ is as in 1.3(a) so that $\phi(V')$ and the image V'_0 of $\epsilon : \phi(V') \to V'$ is defined. Let $S^{odd} \subset S$ be as in 1.1. (This is defined since $S \in \mathcal{I}^1$.) Note that the radical of <, > on V is $Fe_{S^{odd}}$. One can show that

(a) $V_0 = V'_0 \sqcup (V'_0 + e_{S^{odd}}).$

Hence there is a unique fixed point free involution $B \mapsto B'$ of $\phi(V)$ such that $\epsilon(B') = \epsilon(B) + e_{S^{odd}}$ for all $B \in \phi(V)$.

4.2. In this subsection we assume that $(V, <>, e : S \to V)$ is as in 1.3(b); we preserve the notation of Section 3.

Let $\mathcal{F}(V)$ (resp. $\mathcal{F}^1(V)$) be the collection of subspaces of V of the form M_B (resp. $M_B \oplus Fe_S$) for various $B \in \phi(V)$. Let $\tilde{\mathcal{F}}(V) = \mathcal{F}(V) \sqcup \mathcal{F}^1(V)$. We show that $\tilde{\mathcal{F}}(V)$ has properties similar to those of $\mathcal{F}(V)$. We define $\tilde{\epsilon} : \tilde{\mathcal{F}}(V) \to V$ by $\tilde{\epsilon}(M_B) = \epsilon(B)$, $\tilde{\epsilon}(M_B \oplus Fe_S) = \epsilon(B) + e_S$. Note for any $X \in \tilde{\mathcal{F}}(V)$ we have $\tilde{\epsilon}(X) \in X$. (This is similar to 1.2(ii).)

Now $\tilde{\epsilon}$ restricts to the bijection $\mathcal{F}(V) \xrightarrow{\sim} V_0$, $M_B \mapsto \epsilon(B)$ and to the bijection $\mathcal{F}^1(V) \to V_1$, $M_B \oplus Fe_S \mapsto \epsilon(B) + e_S$ (recall the bijection $x \mapsto x + e_S$, $V_0 \xrightarrow{\sim} V_1$). Hence $\tilde{\epsilon}$ is a bijection. (This is similar to 1.2(iii).)

For X, X' in $\tilde{\mathcal{F}}(V)$ we say that $X' \leq X$ if one of the following holds: $X = M_B, X' = M_{B'}$ and $B' \leq B$ in the partial order 1.2(a) on $\phi(V)$; $X = M_B \oplus Fe_S, X' = M_{B'} \oplus Fe_S$ and $B' \leq B$ in the partial order 1.2(a) on $\phi(V)$; $X = M_B \oplus Fe_S, X' = M_{B'}$ and $B' \leq B$ in the partial order 1.2(a) on $\phi(V)$. This is a partial order on $\tilde{\mathcal{F}}(V)$. (This is similar to 1.2(iv).) **4.3.** In this subsection we assume that $(V, <>, e : S \to V)$ (as in 1.1) is perfect. Let $B \in \phi(V)$. We will give an alternative formula for $\overline{\epsilon}(B)$.

We define a partition $B = B_1 \sqcup B_2 \sqcup B_3 \sqcup \ldots$ as follows.

 B_1 is the set of all $I \in B$ such that I is not properly contained in any $I' \in B$. Now B_2 is the set of all $I \in B - B_1$ such that I is not properly contained in any $I' \in B - B_1$. Now B_3 is the set of all $I \in B - (B_1 \cup B_2)$ such that I is not properly contained in any $I' \in B - (B_1 \cup B_2)$, etc.

For $k \geq 1$ we set

 $v_k(B) = \sum_{I \in B_k} e_I \in V.$ We have

(a) $\bar{\epsilon}(B) = v_1(B) + v_3(B) + v_5(B) + \dots$

Let $s \in S$. There is a unique sequence $I_1 \in B_1, I_2 \in B_2, \ldots, I_l \in B_l$ such that $s \in I_l \subset I_{l-1} \subset \ldots \subset I_1$ and $s \notin \bigcup_{I \in B_{l+1}} I$. The coefficient of e_s in $v_1(B) + v_3(B) + v_5(B) + \ldots$ is 0 if $l = 0 \mod 4$; is 1 if $l = 1 \mod 4$; is 1 if $l = 2 \mod 4$; is 0 if $l = 3 \mod 4$. We have $g_s(B) = l$. Note that $(1/2)l(l+1) \mod 2$ is 0 if $l = 0 \mod 4$; is 1 if $l = 1 \mod 4$; is 1 if $l = 2 \mod 4$; is 1 if $l = 1 \mod 4$; is 1 if $l = 2 \mod 4$; is 1 if $l = 1 \mod 4$; is 1 if $l = 2 \mod 4$; is 1 if $l = 1 \mod 4$; is 1 if $l = 2 \mod 4$; is 0 if $l = 3 \mod 4$. This proves (a).

4.4. In this subsection we are in the setup of 2.1. Let $\bar{V}^{\mathbf{C}}$ be the **C**-vector space of functions $\bar{V} \to \mathbf{C}$. For any $x \in \bar{V}$ let $f_x \in \bar{V}^{\mathbf{C}}$ be the function which takes value 1 on the subspace $L_{\bar{\epsilon}^{-1}(x)}$ of \bar{V} and the value 0 on the complement of that subspace; let $f'_x \in \bar{V}^{\mathbf{C}}$ be the function which takes value 1 on the subspace $\{x' \in \bar{V}; < x', L_{\bar{\epsilon}^{-1}(x)} >= 0\}$ of \bar{V} and the value 0 on the complement of that subspace; let $f'_x \in \bar{V}^{\mathbf{C}}$ be the function which takes value 1 on the subspace $\{x' \in \bar{V}; < x', L_{\bar{\epsilon}^{-1}(x)} >= 0\}$ of \bar{V} and the value 0 on the complement of that subspace. From Theorem 1.4 we see that for $x \in \bar{V}$ we have $f'_x = \sum_{y \in \bar{V}} c_{y,x} f_y$ where $c_{y,x} \in \mathbf{Z}$. Moreover, from the triangularity of Fourier transform [3] we see that $c_{y,x} = 0$ unless x = y or dim $L_{\bar{\epsilon}^{-1}(x)} < \dim L_{\bar{\epsilon}^{-1}(y)}$ and that $c_{x,x} = \pm 2^k$ for some $k \in \mathbf{N}$. We conjecture that

(a) for any x, y in \overline{V} , we have either $c_{y,x} = 0$ or $c_{y,x} = \pm 2^k$ for some $k \in \mathbb{N}$. The dihedral group Di_{2N} of order 2N acts naturally on \overline{V} ; see 1.3. Let Z_N be a set of representatives for the Di_{2N} -orbits. Assume for example that x = 0. Then $y \mapsto c_{y,0}$ is constant on each Di_N -orbit. We describe this function assuming that $S = S_N$ (see 2.8) and N = 7. We can take

(b) $\{1245\}, \{12345\}, \{1235\}, \{135\}, \{123\}, \{14\}, \{13\}, \{1\}, \{\emptyset\}$

where we write $i_1 i_2 \dots i_m$ instead of $\bar{e}_{i_1} + \bar{e}_{i_2} + \dots + \bar{e}_{i_m}$. The value of $y \mapsto c_{y,0}$ at the 9 elements in (b) (in the order written) is

1, 0, 1, -1, -1, 0, 1, -2, 8.

5 The set $\omega(\bar{V})$

5.1. In this section we assume that $(\overline{V}, <>, \pi e : S \to \overline{V})$ is as in 1.3(c). We fix a two element subset **e** of S such that $\mathbf{e} \in \mathfrak{E}$.

5.2. For $B \in R$ we set

$$a_B = |\{I \in B; \mathbf{e} \subset I\}| \in \mathbf{N}.$$

Let $\phi(\overline{V})^{\mathbf{e}} = \{B \in \phi(\overline{V}); \operatorname{supp}(B) \cap \mathbf{e} \neq \emptyset\}.$

If $B \in \phi(\bar{V})^{\mathbf{e}}$ (in particular if $n_B > 0$), then using $(P_0), (P_1)$, we see that there is a unique $I_B \in B$ such that $|I_B \cap \mathbf{e}| = 1$.

We have $\phi(\bar{V})^{\mathbf{e}} = \bigsqcup_{\tau \in \mathbf{e}} \phi(\bar{V})^{\tau}$ where $\phi(\bar{V})^{\tau} = \{B \in \phi(\bar{V})^{\mathbf{e}}; \tau \in I_B\}.$

For $B \in \phi(\bar{V})$ we define $B^! \in R$ by $B^! = B - \{I_B\}$ if $n_B \in \{1, 3, 5, \ldots\}$ $B^! = B$ if $n_B \in \{0, 2, 4, \}$. Note that for $B \in \phi(\bar{V})$ we have $n_{B^!} = n_B$. We show: (a) If $B \in \phi(\bar{V})$, $B' \in \phi(\bar{V})$ satisfy $B^! = B'^!$, then B = B'.

If n_B is odd, then from the definition we see that $B^!$ does not satisfy (P_1) . Hence to prove (a) we can assume that both n_B and $n_{B'}$ are odd.

There is a unique $I \in B^{!} = B'^{!}$ such that $\mathbf{e} \subset I$ and such that any $I' \in B^{!} = B'^{!}$ with $I' \prec I$ satisfies $\mathbf{e} \cap I = \emptyset$. We have $I \in B, I \in B'$. Let I_1, I_2, \ldots, I_k (resp. I'_1, I'_2, \ldots, I'_l) be defined in terms of I as in (P_1) for B (resp. B'). We can assume that $I_B = I_1$ (resp. $I_{B'} = I'_1$) and I_2, I_3, \ldots, I_k (resp. I'_2, I'_3, \ldots, I'_l) are the maximal objects of $B^{!}$ (resp. $B'^{!}$) that are strictly contained in I. Hence $\{I_2, I_3, \ldots, I_k\} = \{I'_2, I'_3, \ldots, I'_l\}$. Note that I_1 is the unique object of \mathcal{I}^1 such that $I_1 \blacklozenge I_j$ for j > 1 and $I^{ev} \subset I_1 \sqcup I_2 \sqcup \ldots \sqcup I_k$; similarly I'_1 is the unique object of \mathcal{I}^1 such that $I'_1 \blacklozenge I'_j$ for j > 1 (that is $I'_1 \blacklozenge I_j$ for j > 1) and $I^{ev} \subset I'_1 \sqcup I'_2 \sqcup \ldots \sqcup I'_l$ (that is $I^{ev} \subset I'_1 \sqcup I_2 \sqcup \ldots \sqcup I_k$). It follows that $I_1 = I'_1$ so that B = B'. This proves (a). Let

$$\omega(\bar{V}) = \{B^!; B \in \phi(\bar{V})\} \subset R.$$

From (a) we see that

(b) $B \mapsto B^!$ defines a bijection $\phi(\bar{V}) \xrightarrow{\sim} \omega(\bar{V})$. For any $B \in \omega(\bar{V})$ we define $\tilde{B} \in \phi(\bar{V})$ by $B = \tilde{B}^!$. There is a unique bijection $\epsilon : \omega(\bar{V}) \xrightarrow{\sim} \bar{V}$ such that $\epsilon(B) = \bar{\epsilon}(\tilde{B})$ for any $B \in \omega(\bar{V})$.

There is a unique involution $\iota : S \to S$ preserving the graph structure and interchanging the two elements of **e**. It induces an involution on R denoted again by ι which leaves stable $\phi(\bar{V})$ and $\omega(\bar{V})$.

5.3. We now assume that instead of specifying an element \mathbf{e} of \mathfrak{E} we specify an element $\mathbf{e}' \in \mathfrak{E}'$ (see 2.8) that is a pair $\{s_1, s\}, \{s_2, s\}$ of two distict two edges of S whose intersection is $\{s\}$ for some $s \in S$. In terms of \mathbf{e}' we have a function $(X_1, X_2, \ldots, X_k) \mapsto n_{X_1, X_2, \ldots, X_k}$ from $\phi(\bar{V}')$ (see 2.8) to \mathbf{N} defined in a way analogous to the way $B \mapsto n_B$ from $\phi(\bar{V})$ to \mathbf{N} was defined in terms of \mathbf{e} . We have

$$n_{X_1,X_2,\ldots,X_k} = |\{i \in \{1,2,\ldots,k\}, s \subset X_i - X_i\}|.$$

The analogue of the assignment $B \mapsto I_B$ for $B \in \phi(\overline{V})$ such that $n_B > 0$ is the assignment

$$\{X_1, X_2, \dots, X_k\} \mapsto I_{\{X_1, X_2, \dots, X_k\}} = X$$

for any $\{X_1, X_2, \ldots, X_k\} \in \phi(\bar{V}')$ such that $n_{X_1, X_2, \ldots, X_k} > 0$; here X is the unique X_i such that $s \in X_i$. Then $\omega(\bar{V}')$ is defined in terms of s in the same way as $\omega(\bar{V})$ was defined in terms in terms of **e**. Namely $\omega(\bar{V}')$ consists of the sequences obtained from various sequences $\{X_1, X_2, \ldots, X_k\} \in \phi(\bar{V}')$ by removing $X = I_{\{X_1, X_2, \ldots, X_k\}}$ whenever X is defined and by not removing anything whenever X is not defined.

This approach appears in [4] (in a less symmetric and more complicated way) where $S = S_N$ as in 2.8. The set \mathcal{X}_{N-2} defined in [4, 1.3] is the same as $\omega(\bar{V})$ if \bar{V}, \bar{V}' are identified as in 2.8 and if **e** is taken to be $\{N-1, N\}$ so that s = N.

G. Lusztig

Hence $\omega(\bar{V})$ is closely related to the theory of unipotent representations of even orthogonal groups over a finite field in the same way as $\phi(\bar{V})$ is closely related to the theory of unipotent representations of symplectic groups over a finite field.

5.4. For $B \in \omega(\overline{V})$ we denote by $\langle B \rangle$ the subspace of \overline{V} spanned by $\{\overline{e}_I; I \in B\}$.

For B', B in $\omega(\overline{V})$ we write $B' \preceq B$ if there exists a sequence

$$B'=B_0, B_1, B_2, \ldots, B_k=B$$

such that

(a)
$$'\epsilon(B_0) \in \langle B_1 \rangle, '\epsilon(B_1) \in \langle B_2 \rangle, \dots, '\epsilon(B_{k-1}) \in \langle B_k \rangle.$$

We show:

(b) \leq is a partial order on $\omega(\bar{V})$.

In the setup of (a), for i = 0, 1, ..., k we have $\langle B_i \rangle \subset L_{\tilde{B}_i}$ hence $\bar{\epsilon}(\tilde{B}_i) = {}'\epsilon(B_i) \in L_{\tilde{B}_i}$. We see that if $B' \preceq B$ then $\tilde{B}' \leq \tilde{B}$ in $\phi(\bar{V})$. It is enough to prove that if $B' \preceq B$ in $\omega(\bar{V})$ and $B \preceq B'$ in $\omega(\bar{V})$ then B' = B. We have $\tilde{B}' \leq \tilde{B}$ in $\phi(\bar{V})$ and $\tilde{B} \leq \tilde{B}'$ in $\phi(\bar{V})$. Since \leq is a partial order on $\phi(\bar{V})$ we have $\tilde{B}' = \tilde{B}$. It follows that B = B'. This proves (a). (See also [4, 2.10(a)]).

6 The subsets $\omega^+(bV), \omega^-(\bar{V})$ of $\omega(\bar{V})$

6.1. In this section we preserve the setup of 5.1. Let $z_{\mathbf{e}} : \overline{V} \to F$ be as in 3.5. Let $\overline{V}^+ = z_{\mathbf{e}}^{-1}(0), \overline{V}^- = z_{\mathbf{e}}^{-1}(1)$. We set $\omega^+(\overline{V}) = \epsilon^{-1}(\overline{V}^+), \omega^-(\overline{V}) = \epsilon^{-1}(\overline{V}^-)$. We have $\omega(\overline{V}) = \omega^+(\overline{V}) \sqcup \omega^-(\overline{V})$ and ϵ restricts to bijections $\omega^+(\overline{V}) \to \overline{V}^+, \omega^-(\overline{V}) \to \overline{V}^-$. We show:

(a) If $B \in \phi(\bar{V})$, $n_B = 2k + 1$, then $\bar{\epsilon}(B) \in \bar{V}^+$ so that $B^! \in \omega^+(\bar{V})$. By (P_1) we can find $I' \in B$ such that $I' \cap \mathbf{e} = \{\sigma\}$ for some $\sigma \in \mathbf{e}$; let $\sigma' \in \mathbf{e}, \sigma' \neq \sigma$. We then have $g_{\sigma}(B) = 2k + 2, g_{\sigma'}(B) = 2k + 1$. We have

$$\bar{\epsilon}_{\sigma}(B) + \bar{\epsilon}_{\sigma'}(B) = (1/2)(2k+2)(2k+3) + (1/2)(2k+1)(2k+2) = (1/2)(2k+2)(4k+4) = 0 \mod 2$$

so that $z_{\mathbf{e}}(\bar{\epsilon}(B)) = 0$ that is $\bar{\epsilon}(B) \in \bar{V}^+$. We show:

(b) If $B \in \phi(\bar{V})$, $n_B = 2k$, $k \ge 1$, then $\bar{\epsilon}(B) \in \bar{V}^-$ so that $B^! \in \omega^-(\bar{V})$. By (P_1) we can find $I' \in B$ such that $I' \cap \mathbf{e} = \{\sigma\}$ for some $\sigma \in \mathbf{e}$; let $\sigma' \in \mathbf{e}, \sigma' \neq \sigma$. We then have $g_{\sigma}(B) = 2k + 1, g_{\sigma'}(B) = 2k$. We have

$$\bar{\epsilon}_{\sigma}(B) + \bar{\epsilon}_{\sigma'}(B) = (1/2)(2k+1)(2k+2) + (1/2)2k(2k+1)$$
$$= (1/2)(2k+1)(4k+2) = (2k+1)^2 = 1 \mod 2$$

so that $z_{\mathbf{e}}(\bar{\epsilon}(B)) = 1$ that is $\bar{\epsilon}(B) \in \bar{V}^-$. Note that $\{B \in \omega^+(\bar{V}); n_B = 0\} = \{B \in \phi(\bar{V}); \operatorname{supp}(B) \cap \mathbf{e} = \emptyset\}, \{B \in \omega^-(\bar{V}); n_B = 0\} = \{B \in \phi(\bar{V}); |\operatorname{supp}(B) \cap \mathbf{e}| = 1\}.$

6.2. Let $B' \in \omega(\overline{V})$. We write B' = B! where $B \in \phi(\overline{V})$.

Assume first that B is as in 6.1(a). Then $B' \in \omega^+(\bar{V})$ and I_B is the only $I \in B$ such that $|I \cap \mathbf{e}| = 1$; since $B^! = B - I_B$ we see that for any $I \in B'$ we have $|I \cap \mathbf{e}| \in \{0, 2\}$.

Assume next that B is as in 6.1(b). Then $B' = B \in \omega^{-}(\bar{V})$ and I_B satisfies $|I_B \cap \mathbf{e}| = 1$; thus, for some $I \in B'$ we have $|I \cap \mathbf{e}| = 1$,

We now assume that $n_B = 0$. If $\operatorname{supp}(B) \cap \mathbf{e} = \emptyset$, then clearly we have $|I \cap \mathbf{e}| = 0$ for any $I \in B$. If $|\operatorname{supp}(B) \cap \mathbf{e}| = 1$, then clearly we have $|I \cap \mathbf{e}| = 1$ for some $I \in B$.

We see that for $B \in \omega(V)$ the following holds:

(a) $B \in \omega^+(\overline{V})$ if and only if $|I \cap \mathbf{e}| \in \{0, 2\}$ for any $I \in B$.

6.3. We show:

(a) Let B', B in $\omega(\bar{V})$ be such that $B' \preceq B$. If $B \in \omega^+(\bar{V})$, then $B' \in \omega^+(\bar{V})$.

We can assume that $\epsilon(B') \subset B > 0$. (The general case would follow by using several times this special case.) By 6.2(a) we have $|I \cap \mathbf{e}| \in \{0, 2\}$ for any $I \in B$. It follows that any $x \in B >$ satisfies $z_{\mathbf{e}}(x) = 0$. In particular we have $z_{\mathbf{e}}(\epsilon(B')) = 0$ so that $\epsilon(B') \in V^+ = 0$ and $B' \in \omega^+(V)$. This proves (a).

7 The sets $\mathcal{F}^+(\overline{\bar{V}})^{ au}, \mathcal{F}^-(\overline{\bar{V}})^{ au}$

7.1. In this section we preserve the setup of 5.1. For $\tau \in \mathbf{e}$ let $\omega(\bar{V})^{\tau} = \{B \in \omega(\bar{V}); \tilde{B} \in \phi(\bar{V})^{\tau}\}$. We have $\omega(\bar{V})^{\tau} = \omega^{+}(\bar{V})^{\tau} \sqcup \omega^{-}(\bar{V})^{\tau}$ where for $\delta \in \{+,-\}$ we set $\omega^{\delta}(\bar{V})\tau = \omega(\bar{V})^{\tau} \cap \omega^{\delta}(\bar{V})$.

Under the identification $\omega(\bar{V}) = \omega(\bar{V}')$ in 2.8, 5.3 and with notation of [4, 1.4], the following holds:

If $n \in \{1, 3, 5, ...\}$, then $\{B \in \omega^+(\bar{V})^{N-1}, n_B = n\}$ becomes $\mathcal{X}_{N-2}^{t,+}, t = -n - 1;$ $\{B \in \omega^+(bV)^N, n_B = n\}$ becomes $\mathcal{X}_{N-2}^{t,+}, t = n + 1;$ if $n \in \{0, 2, 4, 6, ...\}$, then $\{B \in \omega^-(\bar{V})^{N-1}, n_B = n\}$ becomes $\mathcal{X}_{N-2}^{t,-}, t = n;$ $\{B \in \omega^-(\bar{V})^N, n_B = n\}$ becomes $\mathcal{X}_{N-2}^{t,-}, t = -n - 2.$

7.2. Let $\tau \in e$.

(a) Assume that $B' \in \omega^+(\bar{V}), B \in \omega^+(\bar{V})^{\tau}$ satisfy $B' \preceq B$ and $n_B > 0$. Then we have either $n_{B'} = n_B$ and $B' \in \omega^+(\bar{V})^{\tau}$, or else $n_{B'} < n_B$.

(b) Assume that $B' \in \omega^{-}(\bar{V}), B \in \omega^{-}(\bar{V})^{\tau}$ satisfy $B' \preceq B$ and $n_B \geq 0$. Then we have either $n_{B'} = n_B$ and $B' \in \omega^{-}(\bar{V})^{\tau}$, or else $n_{B'} < n_B$.

Using the identification $\omega(\bar{V}) = \omega(\bar{V}')$ in 2.8, 5.3 and the results in 7.1 we see that when $\tau = N - 1$, (a) follows from [4, 3.2] and (b) follows from [4, 3.4]. Using the symmetry ι , we see that (a) and (b) for $\tau = N$ follow from (a) and (b) for $\tau = N - 1$.

7.3. We choose a subset J of $S - \mathbf{e}$ such that |J| = N - 3 and such that when N > 3 we have $J \subset \mathcal{I}$.

Let $\omega(\bar{V})_J = \{B \in \omega(\bar{V}); \operatorname{supp} B \subset J\}$. Then ' ϵ defines a bijection of $\omega(\bar{V})_J$ onto a subset $\bar{V}_{J,0}$ of \bar{V} . We set

$$\bar{V}_{J,1} = \epsilon(\{B \in \omega(\bar{V}); \operatorname{supp}(B) \cap \mathbf{e} = \emptyset\}) - \bar{V}_{J,0} \subset \bar{V}.$$

Assume now that $B' \in \omega(\bar{V}), B \in \omega(\bar{V})_J$ satisfy $B' \preceq B$. From [4, 3.3] we deduce:

G. Lusztig

(a) We have $B' \in \omega(\bar{V})_J$.

7.4. Let $\tau \in \mathbf{e}$. We set $\tilde{\omega}^+(\bar{V})^{\tau} = \omega^+(\bar{V})^{\tau} \cup \omega(\bar{V}_J) \ \tilde{\omega}^-(\bar{V})^{\tau} = \omega^-(\bar{V})^{\tau}$.

Assume now that $B' \in \omega^{\delta}(\bar{V}), B \in \tilde{\omega}^{\delta}(\bar{V})^{\tau}$ satisfy $B' \preceq B$. From 7.2(a),(b) and 7.3(a) we deduce:

(a) We have either $B' \in \tilde{\omega}^{\delta}(\bar{V})^{\tau}$ and $n_{B'} = n_B$, or else $n_{B'} < n_B$.

7.5. Let $\overline{\bar{V}} = \overline{V}/F[\mathbf{e}]$ and let $\overline{p}: \overline{V} \to \overline{\bar{V}}$ be the obvious quotient map. Let $\overline{\bar{V}}^+ = \overline{p}(\overline{V}^+)$, $\overline{\bar{V}}^- = \overline{p}(\overline{V}^-)$. We have $[\mathbf{e}] \in \overline{V}^+$ hence $\overline{\bar{V}} = \overline{\bar{V}}^+ \sqcup \overline{\bar{V}}^-$ and $|\overline{\bar{V}}^+| = (1/2)|\overline{V}^+| = |\overline{\bar{V}}^-|$. Let $\delta \in \{+,\}$. For $n \geq 0, \tau \in \mathbf{e}$ we set

$$\bar{V}_n^{\delta,\tau} = \epsilon(\{B \in \omega^\delta(\bar{V})^\tau; n_B = n\}) \subset \bar{V}^\delta.$$

From the results in [4, 2.7, 3.5] we see that

(a) the two subsets $\bar{V}_n^{\delta,\tau}$ (with $\tau \in \mathbf{e}$) are interchanged by the involution $x \mapsto x + [\mathbf{e}]$ of \bar{V}^{δ} .

(b) $\bar{V}_{J,0}, \bar{V}_{J,1}$ are interchanged by the involution $x \mapsto x + [\mathbf{e}]$ of \bar{V} .

(For (b) see also 4.1(a).)

For $\tau \in \mathbf{e}$ we set

$$H^{\delta,\tau} = \epsilon(\tilde{\omega}^{\delta}(\bar{V})^{\tau}) \subset \bar{V}^{\delta}.$$

We have

$$H^{+,\tau} = \bar{V}_{J,0} \cup \bigcup_{n \ge 0} \bar{V}_n^{+,\tau},$$
$$H^{-,\tau} = \bigcup_{n \ge 0} \bar{V}_n^{-,\tau}$$

From (a),(b) we see that \bar{p} restricts to bijections $H^{\delta,\tau} \xrightarrow{\sim} \overline{\bar{V}}^{\delta}$.

For $y \in \overline{V}^{\delta}$ we denote by $\tilde{y}^{\tau} \in H^{\delta,\tau}$ the inverse image of y under this bijection and we define $\nu_y \in \mathbf{N}$ by:

 $\nu_y \stackrel{s}{=} n \text{ if } \tilde{y}^{\tau} \in \bar{V}_n^{\delta,\tau}, \\ \nu_y = 0 \text{ if } \delta = + \text{ and } \tilde{y}^{\tau} \in \bar{V}_{J,0}.$

7.6. Let $\delta \in \{+,-\}, \tau \in \mathbf{e}$. For y', y in \overline{V}^{δ} we say that $y' \leq_{\tau} y$ if there exists

(a) a sequence $y' = y_0, y_1, y_2, ..., y_k = y$ in \overline{V}^{δ} such that for $i \in \{0, 1, ..., k-1\}$ we have $\tilde{y}_i^{\tau} \in \langle \epsilon^{-1}(\tilde{y}_{i+1}^{\tau}) \rangle$ or $\tilde{y}_i^{\delta} + [\mathbf{e}] \in \langle \epsilon^{-1}(\tilde{y}_{i+1}^{\delta}) \rangle$.

We show that in this situation, for any $i \in \{0, 1, ..., k-1\}$ we have

(b) $\nu_{y_i} \leq \nu_{y_{i+1}}$. We set $B_i = \epsilon^{-1}(\tilde{y}_i^{\tau}), B_i' = \epsilon^{-1}(\tilde{y}_i^{\tau} + [\mathbf{e}]), B_{i+1} = \epsilon^{-1}(\tilde{y}_{i+1}^{\tau}).$

If $\tilde{y}_i^{\tau} \in \langle \epsilon^{-1}(\tilde{y}_{i+1}^{\tau}) \rangle$, then $B_i \leq B_{i+1}$ so that by 7.4(a) we have $n_{B_i} \leq n_{B_{i+1}}$. But $n_{B_i} = \nu_{y_i}, n_{B_{i+1}} = \nu_{y_{i+1}}$, so that (b) holds.

If $\tilde{y}_i^{\tau} + [\mathbf{e}] \in \langle \epsilon^{-1}(\tilde{y}_{i+1}^{\tau}) \rangle$, then $B'_i \leq B_{i+1}$, so that by 7.4(a) we have $n_{B'_i} \leq n_{B_{i+1}}$. But $n_{B'_i} = \nu_{y_i}$, $n_{B_{i+1}} = \nu_{y_{i+1}}$, so that (b) holds.

We now see:

(c) If $y' \leq_{\tau} y$, then $\nu_{y'} \leq \nu_y$.

We show:

(d) \leq_{τ} is a partial order on \overline{V}^{δ} .

For $y \in \overline{V}^{\delta}$ we have $\tilde{y}^{\tau} \in \langle \epsilon^{-1}(\tilde{y}^{\tau}) \rangle$ so that $y \leq_{\tau} y$. It remains to show that

(e) if y, y' in \overline{V}° satisfy $y \leq_{\tau} y'$ and $y' \leq_{\tau} y$, then y = y'.

Using (c) we have $\nu_{y'} \leq \nu_y$ and $\nu_y \leq \nu_{y'}$, hence $\nu_y = \nu_{y'}$. Consider now a sequence $y' = y_0, y_1, y_2, \ldots, y_k = y$ as in (a). Using (b) and $\nu_y = \nu_{y'}$ we see that for $i \in \{0, 1, \ldots, k-1\}$ we have $\nu_{y_i} = \nu_{y_{i+1}}$. Recall that we have either

(i) $B_i \preceq B_{i+1}$, or

(ii) $B'_i \preceq B_{i+1}$,

where as before we set $B_i = \epsilon^{-1}(\tilde{y}_i^{\tau}), B'_i = \epsilon^{-1}(\tilde{y}_i^{\tau} + [\mathbf{e}]), B_{i+1} = \epsilon^{-1}(\tilde{y}_{i+1}^{\tau})$. Note that $n_{B_i} = n_{B'_i} = n_{B_{i+1}}$.

We have $B_i \in \tilde{\omega}^{\delta}(\bar{V})^{\tau}$, $B'_i \in \tilde{\omega}^{\delta}(\bar{V})^{\tau'}$, $B_{i+1} \in \tilde{\omega}^{\delta}(\bar{V})^{\tau}$, where $\tau' \in \mathbf{e}$ and $\tau \neq \tau'$. Using 7.4(a), we see that if (ii) holds, then (since $n_{B'_i} = n_{B_{i+1}}$) we would have $\tau = \tau'$, a contradiction. Thus, (i) holds. Using this for $i = 0, 1, \ldots, k - 1$ we see that

$$B_0 \preceq B_1 \preceq B_2 \leq \ldots \leq B_k$$

In particular we have $B' \preceq B$. Reversing the roles of y, y' we have similarly $B \preceq B'$. Since \preceq is a partial order on $\omega(\bar{V})$, it follows that B = B'. Applying ' ϵ , we obtain $\tilde{y}^{\tau} = \tilde{y}'^t$ hence y = y'. This proves (e) and hence (d).

7.7. Let $\delta \in \{+,-\}, \tau \in \mathbf{e}$. For any $y \in \overline{V}^{\delta}$ we set $\langle y \rangle_{\tau} := \overline{p}(\langle \epsilon^{-1}(\tilde{y}^{\tau}) \rangle)$ (a subspace of \overline{V}) and $\langle y \rangle_{\tau,\delta} = \langle y \rangle_{\tau} \cap \overline{V}^{\delta}$. Note that if $\delta = +$ then $\langle y \rangle_{\tau,\delta} = \langle y \rangle_{\tau}$; if $\delta = -$ then $\langle y \rangle_{\tau,\delta}$ is the complement in $\langle y \rangle_{\tau}$ of a hyperplane of $\langle y \rangle_{\tau}$. Now, the condition that $\tilde{y}_i^{\delta} \in \langle \epsilon^{-1}(\tilde{y}_{i+1}^{\tau}) \rangle$ or $\tilde{y}_i^{\delta} + [\mathbf{e}] \in \langle \epsilon^{-1}(\tilde{y}_{i+1}^{\delta}) \rangle$ (in 7.6(a)) is equivalent to the condition that $y_i \in \overline{p}(\langle \epsilon^{-1}(\tilde{y}_{i+1}^{\tau}) \rangle)$. Thus, the condition

(in 7.6(a)) is equivalent to the condition that $y_i \in \bar{p}(\langle \epsilon^{-1}(\tilde{y}_{i+1}^{\tau}) \rangle)$. Thus, the condition that y, y' in $\overline{\bar{V}}^{\delta}$ satisfy $y' \leq_{\tau} y$ is equivalent to the following condition:

there exists a sequence $y' = y_0, y_1, y_2, \ldots, y_k = y$ in \overline{V}^{δ} such that for $i \in \{0, 1, \ldots, k-1\}$ we have $y_i \in \langle y_{i+1} \rangle_{\tau,\delta}$.

Let $\mathcal{F}^{\delta}(\overline{V})^{\tau}$ be the collection of subsets of \overline{V}^{δ} of the form $\langle y \rangle_{\tau,\delta}$ for various $y \in \overline{V}^{\delta}$. We show:

(a) If y', y in \overline{V}° satisfy $\langle y' \rangle_{\tau,\delta} = \langle y \rangle_{\tau,\delta}$, then y = y'.

Indeed, we have $y \in \langle y \rangle_{\tau,\delta}$, $y' \in \langle y' \rangle_{\tau,\delta}$, hence $y \in \langle y' \rangle_{\tau,\delta}$, $y' \in \langle y \rangle_{\tau,\delta}$, so that $y \leq_{\tau} y', y' \leq_{\tau} y$. Since \leq_{τ} is a partial order, it follows that y = y', proving (a).

We show:

(b) The map $\tilde{\omega}^{\delta}(\bar{V})^{\tau} \to \mathcal{F}^{\delta}(\bar{V})^{\tau}, \ \epsilon^{-1}(\tilde{y}^{\tau}) \mapsto \langle y \rangle_{\tau,\delta} \ (for \ y \in \overline{V}^{\delta}) \ is \ bijective.$

This map is obviously surjective. Moreover we have $|\tilde{\omega}^{\delta}(\bar{V})^{\tau} \to \mathcal{F}^{\delta}(\overline{\bar{V}})^{\tau}| = |\overline{\bar{V}}^{\delta}|$. It is then enough to show that $|\mathcal{F}^{\delta}(\overline{\bar{V}})^{\tau}| = |\overline{\bar{V}}^{\delta}|$. This follows from (a).

We show:

(c) If $y \in \overline{V}^{\delta}$ and $B = \epsilon^{\prime} \epsilon^{-1}(\tilde{y}^{\tau})$ so that $\langle y \rangle_{\tau,\delta} = \pi(\langle B \rangle)$ then \bar{p} restricts to an isomorphism $\langle B \rangle \xrightarrow{\sim} \langle y \rangle_{\tau,\delta}$.

Indeed it is enough to show that $[\mathbf{e}] \notin B >$. But in fact we have even $[\mathbf{e}] \notin L_B$ as a consequence of 3.5(a).

7.8. Now the two sets $\mathcal{F}^{-}(\overline{V})^{\tau}$ (for the two values of $\tau \in \mathbf{e}$) are interchanged by the involution induced by ι ; they do not depend on the choice of J in 7.3. This is not so for the two sets $\mathcal{F}^{+}(\overline{V})^{\tau}$ (for the two values of $\tau \in \mathbf{e}$), at least if N > 3; these sets do depend

on the choice of J in 7.3. But we prefer one of them over the other; namely we prefer the value of τ such that τ is not joined in our graph to any element of J. (This determines τ uniquely if N > 3.) This is the choice made in [4].

Acknowledgement Supported by NSF grant DMS-2153741.

References

- G. LUSZTIG, A new basis for the representation ring of a Weyl group, *Represent. Th.* 23 (2019), 439–461.
- [2] G. LUSZTIG, The Grothendieck group of unipotent representations: a new basis, *Represent. Th.* 24 (2020), 178-209.
- [3] G. LUSZTIG, Fourier transform as a triangular matrix, *Represent. Th.* 24 (2020), 470-482.
- [4] G. LUSZTIG, On bases of certain Grothendieck groups, II, arXiv:2307.01950.

Received: 05.11.2023 Accepted: 13.01.2024

> Department of Mathematics, M. I. T., Cambridge, MA 02139, USA E-mail: gyuri@mit.edu