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Abstract

Recently, Liu provided several nice supercongruences. Inspired by his work, in this
paper, we establish a new q-supercongruence with two free parameters modulo the
fourth power of a cyclotomic polynomial. By taking suitable parameter substitutions
in this q-supercongruence, we derive some new results including a partial q-analogue
of Liu’s supercongruence. Our main auxiliary tools are Watson’s 8ϕ7 transformation
formula for basic hypergeometric series, the ‘creative microscoping’ method introduced
by Guo and Zudilin and the Chinese remainder theorem for coprime polynomials.
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1 Introduction

In 1997, Van Hamme [17] conjectured 13 Ramanujan-type supercongruences which were
labeled as (A.2)–(M.2). The supercongruences (C.2) and (D.2) can be stated as follows:

(C.2)

(p−1)/2∑
k=0

(4k + 1)
(1/2)

4
k

k!4
≡ p (mod p3), p ̸= 2;

(D.2)

(p−1)/3∑
k=0

(6k + 1)
(1/3)6k
k!6

≡ −pΓp (1/3)
9

(mod p4), p ≡ 1 (mod 6).

Here and throughout the paper, p is a prime, (x)0 = 1, (x)n = x(x+1) · · · (x+n−1) stands
for the the Pochhammer symbol and Γp(x) is the p-adic Gamma function. In 2006, making
use of Dougall’s formula, Long and Ramakrishna [14] gave an extension of Van Hamme’s
(D.2):

p−1∑
k=0

(6k + 1)
(1/3)6k
k!6

≡

 −pΓp(1/3)
9 (mod p6), if p ≡ 1 (mod 6),

−10

27
p4Γp(1/3)

9 (mod p6), if p ≡ 5 (mod 6).

Similarly, Liu [11] established a new supercongruence: for p ≥ 5,

p−1∑
k=0

(6k − 1)
(−1/3)6k

k!6
≡

{
140p4Γp(2/3)

9 (mod p5), if p ≡ 1 (mod 6),

378pΓp(2/3)
9 (mod p5), if p ≡ 5 (mod 6).

(1.1)
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Also, Guo and Schlosser [4] proposed one conjecture as follows: for p ≡ 2 (mod 3),

(p+1)/3∑
k=0

(6k − 1)
(−1/3)4k(1)2k
(1)4k(−2/3)2k

≡ p (mod p3). (1.2)

By using the hypergeometric series identities and p-adic Gamma functions, Jana and Kalita
[8] first confirmed the supercongruence (1.2). Later, based on combinatorial identities
arising from symbolic summation, Liu [10] provided a stronger version of (1.2): for odd
primes p ≡ 2 (mod 3),

(p+1)/3∑
k=0

(6k − 1)
(−1/3)4k(1)2k
(1)4k(−2/3)2k

≡ p− p3
(
1

9
Bp−2 (1/3)− 2

)
(mod p4), (1.3)

where the Bernoulli polynomials are given by

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
.

During the past few years, there has been an increasing attention to the issue of finding
q-analogues of congruences and supercongruences. The reader may be referred to [3, 6, 7,
9, 13, 16, 18, 19, 20, 21] for some of their work. Recently, in [4], Guo and Schlosser gave a
partial q-analogue of supercongruence (1.2): for integers n > 2 with n ≡ 2 (mod 3),

(n+1)/3∑
k=0

[6k − 1]

(
q−1; q3

)4
k

(
q3; q3

)
2k

(q3; q3)
4
k (q

−2; q3)2k
≡ 0 (mod Φn(q)). (1.4)

Here and throughout the paper, the q-shifted factorial is defined as (a; q)0 = 1 and (a; q)n =
(1− a) (1− aq) · · ·

(
1− aqn−1

)
with n ∈ Z+. For brevity, its product form can be written

as (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n. And [n] = [n]q = 1 + q + · · · + qn−1

denotes the q-integer. Moreover, Φn(q) represents the n-th cyclotomic polynomial in q.
Motivated by the work just mentioned, in this paper, we shall establish a new q-

supercongruence with two free parameters c and e, from which we can deduce a partial
q-analogue of Liu’s congruence (1.1).

The rest of this paper is arranged as follows. Our main results will be shown in the
next section. Then the proof of our q-supercongruence will be presented in Section 3, where
the ‘creative microscoping’ method introduced by Guo and Zudilin [5] and the Chinese
remainder theorem for coprime polynomials will be used.

2 Main results

Theorem 1. Let n ≡ 2 (mod 3) be a positive integer. Then, modulo [n]Φn(q)
3,

M∑
k=0

[6k − 1]

(
q−1; q3

)4
k

(
cq−1, eq−1; q3

)
k

(q3; q3)
4
k (q

3/c, q3/e; q3)k

(
q9

ce

)k

≡ [n]q(n+1)/3

(
q−2; q3

)
(n+1)/3

(q3; q3)(n+1)/3

1− [n]2
(n+1)/3∑

i=1

q3i

[3i]2

 (n+1)/3∑
k=0

(
q4/ce; q3

)
k

(
q−1; q3

)3
k

(q3/c, q3/e, q3, q−2; q3)k
q3k,
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where here and in what follows M = (n+ 1)/3 or n− 1.

Setting c → 1, e → 1 in Theorem 1, we obtain a partial q-analogue of Liu’s congruence
(1.1) as follows.

Corollary 1. Let n ≡ 2 (mod 3) be a positive integer. Then, modulo [n]Φn(q)
3,

M∑
k=0

[6k − 1]

(
q−1; q3

)6
k

(q3; q3)
6
k

q9k

≡ [n]q(n+1)/3

(
q−2; q3

)
(n+1)/3

(q3; q3)(n+1)/3

1− [n]2
(n+1)/3∑

i=1

q3i

[3i]2

 (n+1)/3∑
k=0

(
q4; q3

)
k

(
q−1; q3

)3
k

(q3; q3)
3
k (q

−2; q3)k
q3k.

Furthermore, letting q → q2 and c = e = q7 in Theorem 1, we obtain a new result as
follows.

Corollary 2. Let n ≡ 2 (mod 3) be a positive integer. Then, modulo [n]q2Φn(q
2)3,

M∑
k=0

[6k−1]q2 [6k−1]2
(
q−2; q6

)4
k

(q6; q6)
4
k

q4k ≡
−2[n]q2q

2n−7
3

(
q−4; q6

)
(n+1)/3

(1 + q−2) (q6; q6)(n+1)/3

1− [n]2q2

(n+1)/3∑
i=1

q6i

[3i]2q2

 .

By using the following congruence from [15]: for primes p > 5, ⌊x⌋ denotes the integral
part of x,

⌊p/3⌋∑
k=1

1

k2
≡ 1

2

(p
3

)
Bp−2 (1/3) (mod p), (2.1)

and letting n = p with p ≡ 2 (mod 3) and p > 5, q → 1 in Corollary 2, we get the
supercongruence: for primes p ≡ 2 (mod 3) with p > 5, modulo p4,

(p+1)/3∑
k=0

(6k − 1)3
(−1/3)4k

k!4
≡ (−1)(p−2)/3pΓ2

p (2/3)

(
1− p2 − p2

18

(p
3

)
Bp−2 (1/3)

)
, (2.2)

where
(

·
p

)
denotes the Legendre symbol.

Moreover, taking ce = q4 in Theorem 1, we get the following q-supercongruence.

Corollary 3. Let n ≡ 2 (mod 3) be a positive integer. Then, modulo [n]Φn(q)
3,

M∑
k=0

[6k − 1]

(
q−1; q3

)4
k

(q3; q3)
4
k

q5k ≡ [n]q(n+1)/3

(
q−2; q3

)
(n+1)/3

(q3; q3)(n+1)/3

1− [n]2
(n+1)/3∑

i=1

q3i

[3i]2

 .

Letting n = p with p ≡ 2 (mod 3) and p > 5, q → 1 in Corollary 3, we obtain a new
congruence: for primes p ≡ 2 (mod 3) with p > 5, modulo p4,

(p+1)/3∑
k=0

(6k − 1)
(−1/3)4k

k!4
≡ (−1)(p+1)/3pΓ2

p (2/3)

(
1− p2 − p2

18

(p
3

)
Bp−2 (1/3)

)
. (2.3)
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Combining (2.2) and (2.3), we get a new and rare supercongruence: for primes p ≡ 2
(mod 3),

(p+1)/3∑
k=0

(6k − 1)(18k2 − 6k + 1)
(−1/3)4k

k!4
≡ 0 (mod p4). (2.4)

3 Proof of Theorem 1

In fact, the proof of Theorem 1 can be transformed into confirming the following generalized
theorem.

Theorem 2. Let n > 1, d ≥ 2 be integers with n ≡ r (mod d) and r ∈ {1,−1}. Then,
modulo [n]Φn(q)

3,

W∑
k=0

[2dk + r]

(
qr; qd

)4
k

(
cqr, eqr; qd

)
k

(qd; qd)
4
k (q

d/c, qd/e; qd)k
(ce)−kq(2d−3r)k

≡ [n]
qr(r−n)/d

(qd; qd)(n−r)/d

1− [n]2
(n−r)/d∑

i=1

qdi

[di]2


×

(n−r)/d∑
k=0

(
q2r+dk; qd

)
(n−r)/d−k

(qd−r/ce; qd)k
(
qr; qd

)3
k

(qd/c, qd/e, qd; qd)k
qdk,

(3.1)

where here and in what follows W = (n− r)/d or n− 1.

Clearly, when d = 3, r = −1, Theorem 2 reduces to Theorem 1. Actually, by making
appropriate parameter substitutions in Theorem 2, more results can be obtained. For
example, letting d = 3, r = 1, c → 1, e → 1 and q → 1 in Theorem 2, we reprove Van
Hamme’s (D.2). In addition, setting d = 2, r = 1 and c = e = q1/2 in Theorem 2, we get
a new q-analogue of Van Hamme’s (C.2) modulo p4 as follows: for positive odd integers n,
modulo [n]Φn(q

3),

N∑
k=0

[4k + 1]

(
q; q2

)4
k

(q2; q2)
4
k

≡ [n]q(1−n)/2 − [n]3q(1−n)/2

(n−1)/2∑
k=0

q2k

[2k]2
,

where N = (n− 1)/2 or n− 1. It should be point out that Guo [2] gave another q-analogue
of Van Hamme’s (C.2) modulo p4: for positive odd integers n,

(n−1)/2∑
k=0

[4k + 1]

(
q; q2

)4
k

(q2; q2)
4
k

≡ q(1−n)/2[n] +

(
n2 − 1

)
(1− q)2

24
q(1−n)/2[n]3 (mod [n]Φn(q)

3).

In the process of proving Theorem 2, we shall utilize Watson’s 8ϕ7 transformation for-
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mula [1]:

8ϕ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1 ; q,

a2qn+2

bcde

]

=
(aq, aq/de; q)n
(aq/d, aq/e; q)n

4ϕ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
. (3.2)

Here, the basic hypergeometric series r+1ϕr, following Gasper and Rahman[1], is defined as

r+1ϕr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑
k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, . . . , br; q)k
, for 0 < |q| < 1.

Before proving Theorem 2, we first list the following two related results, which have
been proved in [12].

Lemma 1. Let d, n be positive integers with gcd(d, n) = 1. Let r be an integer and a, b,
c, e be indeterminates. Then, modulo [n],

m1∑
k=0

[2dk + r]

(
qr, cqr, eqr, qr/b, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, bqd, qd/a, aqd; qd)k

(
b

ce

)k

q(2d−3r)k ≡ 0,

n−1∑
k=0

[2dk + r]

(
qr, cqr, eqr, qr/b, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, bqd, qd/a, aqd; qd)k

(
b

ce

)k

q(2d−3r)k ≡ 0,

where 0 ≤ m1 ≤ n− 1 and dm1 ≡ −r (mod n).

Lemma 2. Let n > 1, d ≥ 2, r be integers with gcd(r, d) = 1 and n ≡ r (mod d) such that
n+ d− nd ≤ r ≤ n. Then, modulo Φn(q) (1− aqn) (a− qn),

(n−r)/d∑
k=0

[2dk + r]

(
qr, cqr, eqr, qr/b, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, bqd, qd/a, aqd; qd)k

(
b

ce

)k

q(2d−3r)k

≡ [n]

(
b

qr

)(n−r)/d
(
q2r/b; qd

)
(n−r)/d

(bqd; qd)(n−r)/d

(n−r)/d∑
k=0

(
qd−r/ce, qr/b, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, q2r/b; qd)k
qdk. (3.3)

In order to complete our proof of Theorem 2, we still need the following lemma.

Lemma 3. Let n > 1, d ≥ 2 be integers with n ≡ r (mod d) and r ∈ {1,−1}. Then,
modulo b− qn,

W∑
k=0

[2dk + r]

(
qr, cqr, eqr, qr/b, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, bqd, qd/a, aqd; qd)k

(
b

ce

)k

q(2d−3r)k

≡ [n]

(
qr, qd−r; qd

)
(n−r)/d

(qd/a, aqd; qd)(n−r)/d

(n−r)/d∑
k=0

(
qd−r/ce, aqr, qr/a, qr/b; qd

)
k

(qd, qd/c, qd/e, q2r/b; qd)k
qdk, (3.4)

where W = (n− r)/d or n− 1.
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Proof. Letting q → qd, n → (n − r)/d, a = qr, b = cqr, c = eqr, d = aqr and e = qr/a in
Watson’s 8ϕ7 transformation formula (3.2), we have

(n−r)/d∑
k=0

[2dk + r]

(
qr, cqr, eqr, qr−n, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, qd+n, qd/a, aqd; qd)k

(
q2d+n−3r

ce

)k

= [n]

(
qr, qd−r; qd

)
(n−r)/d

(qd/a, aqd; qd)(n−r)/d

(n−r)/d∑
k=0

(
qd−r/ce, aqr, qr/a, qr−n; qd

)
k

(qd, qd/c, qd/e, q2r−n; qd)k
qdk.

In light of the fact that
(
qr−n; qd

)
k
= 0 for n−1 ≥ k > (n−r)/d, we confirm the correctness

of (3.4).

Now, we present a parametric generalization of Theorem 2.

Theorem 3. Let n > 1, d ≥ 2 be integers with n ≡ r (mod d) and r ∈ {1,−1}. Then,
modulo Φn(q)

2 (1− aqn) (a− qn),

(n−r)/d∑
k=0

[2dk + r]

(
qr; qd

)2
k

(
cqr, eqr, aqr, qr/a; qd

)
k

(qd; qd)
2
k (q

d/c, qd/e, qd/a, aqd; qd)k

(
q2d−3r

ce

)k

≡ [n]Qq(a, n)

(n−r)/d∑
k=0

(
q2r+dk; qd

)
(n−r)/d−k

(
qd−r/ce, aqr, qr/a, qr; qd

)
k

(qd, qd/c, qd/e; qd)k
qdk, (3.5)

where

Qq(a, n) =
qr(r−n)/d (1− aqn) (a− qn)

(1− a)2

{
1

(qd; qd)(n−r)/d

−

(
qd; qd

)
(n−r)/d

(qd/a, aqd; qd)(n−r)/d

}

+
qr(r−n)/d

(qd; qd)(n−r)/d

.

Proof. It is easy to see that Φn(q) (1− aqn) (a− qn) and b − qn are relatively prime poly-
nomials. Noting the relations

(b− qn)
(
ab− 1− a2 + aqn

)
(a− b)(1− ab)

≡ 1 (mod (1− aqn) (a− qn)),

(1− aqn) (a− qn)

(a− b)(1− ab)
≡ 1 (mod b− qn),

and employing the Chinese remainder theorem for coprime polynomials, we arrive at the
following result from Lemma 2 and Lemma 3: modulo Φn(q) (1− aqn) (a− qn) (b− qn),

(n−r)/d∑
k=0

[2dk + r]

(
qr, cqr, eqr, qr/b, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, bqd, qd/a, aqd; qd)k

(
b

ce

)k

q(2d−3r)k

≡ [n]θq(a, b, n)

(n−r)/d∑
k=0

(
qd−r/ce, aqr, qr/a, qr/b; qd

)
k

(qd, qd/c, qd/e, q2r/b; qd)k
qdk, (3.6)
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where the notation θq(a, b, n) on the right-hand side denotes

θq(a, b, n) =
(b− qn)

(
ab− 1− a2 + aqn

)
(a− b)(1− ab)

(b/qr)(n−r)/d
(
q2r/b; qd

)
(n−r)/d

(bqd; qd)(n−r)/d

+
(1− aqn) (a− qn)

(a− b)(1− ab)

(
qr, qd−r; qd

)
(n−r)/d

(qd/a, aqd; qd)(n−r)/d

.

It is not difficult to see that(
qd−r; qd

)
(n−r)/d

=
(
1− qd−r

) (
1− q2d−r

)
· · ·

(
1− qn−2r

)
≡

(
1− bqd−r−n

) (
1− bq2d−r−n

)
· · · (1− bq−2r)

≡ (−1)(n−r)/db(n−r)/dq
(n−r)(d−n−3r)

2d

(
q2r/b; qd

)
(n−r)/d

(mod b− qn),(
qr; qd

)
(n−r)/d

= (1− qr)
(
1− qd+r

)
· · · (1− qn−d)

≡
(
1− bqr−n

) (
1− bqd+r−n

)
· · ·

(
1− bq−d

)
≡ (−1)(n−r)/dq

(n−r)(n−d+r)
2d (qd/b; qd)(n−r)/d (mod b− qn).

Therefore, we can rewrite (3.6) as, modulo Φn(q) (1− aqn) (a− qn) (b− qn),

(n−r)/d∑
k=0

[2dk + r]

(
qr, cqr, eqr, qr/b, aqr, qr/a; qd

)
k

(qd, qd/c, qd/e, bqd, qd/a, aqd; qd)k

(
b

ce

)k

q(2d−3r)k

≡ [n]Ωq(a, b, n)

(n−r)/d∑
k=0

(
q2r+dk/b; qd

)
(n−r)/d−k

(
qd−r/ce, aqr, qr/a, qr/b; qd

)
k

(qd, qd/c, qd/e; qd)k
qdk, (3.7)

where the notation Ωq(a, b, n) on the right-hand side denotes

Ωq(a, b, n) =
(b− qn)

(
ab− 1− a2 + aqn

)
(b/qr)

(n−r)/d

(a− b)(1− ab) (bqd; qd)(n−r)/d

+
(1− aqn) (a− qn) (b/qr)

(n−r)/d (
qd/b; qd

)
(n−r)/d

(a− b)(1− ab) (qd/a, aqd; qd)(n−r)/d

.

It is easy to say that the limit of b − qn as b → 1 has the factor Φn(q). Meanwhile, since
n ≡ r (mod d), i.e., gcd(d, n) = 1, the factor

(
bqd; qd

)
(n−r)/d

in the denominator of the

left-hand side of (3.7) as b → 1 is relatively prime to Φn(q). Thus, letting b → 1 in (3.7),
we conclude that (3.5) is true modulo Φn(q)

2 (1− aqn) (a− qn) with the relation:

(1− qn)
(
1 + a2 − a− aqn

)
= (1− a)2 + (1− aqn) (a− qn) .
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Proof of Theorem 2. By the L’Hospital rule, we have

lim
a→1

(1− aqn)(a− qn)

(1− a)2

{
1

(qd; qd)(n−r)/d

−

(
qd; qd

)
(n−r)/d

(aqd, qd/a; qd)(n−r)/d

}

= − [n]2

(qd; qd)(n−r)/d

(n−r)/d∑
i=1

qdi

[di]2
.

Letting a → 1 in Theorem 3 and utilizing the above limit, we deduce that (3.1) is true

modulo Φn(q)
4 by noticing that

(
qr; qd

)4
k
≡ 0 (mod Φn(q)

4) for (n − r)/d < k ≤ n − 1.
From Lemma 1 with r ∈ {1,−1} and a = b = 1, we conclude that the congruence (3.1)
holds modulo [n]. Since the least common multiple of [n] and Φn(q)

4 is [n]Φn(q)
3, we obtain

the desired result.
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