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Abstract

Given an algebroid plane curve f = 0 over an algebraically closed field of charac-
teristic p ≥ 0 we consider the Milnor number µ(f), the delta invariant δ(f) and the
number r(f) of its irreducible components. Put µ̄(f) = 2δ(f)− r(f)+1. If p = 0 then
µ̄(f) = µ(f) (the Milnor formula). If p > 0 µ(f) is not an invariant and µ̄(f) plays the
role of µ(f). Let Nf be the Newton polygon of f . We define the numbers µ(Nf ) and
r(Nf ) which can be computed by explicit formulas. The aim of this note is to give
a simple proof of the inequality µ̄(f) − µ(Nf ) ≥ r(Nf ) − r(f) ≥ 0 due to Boubakri,
Greuel and Markwig. We also prove that µ̄(f) = µ(Nf ) when f is non-degenerate.
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1 Introduction

The main objective of this note is to give a new and simple proof of [3, Proposition 7].The
paper is organised as follows. Section 2 is a survey of prerequisites from the theory of
algebroid curves (see [13]). We define the invariant µ̄ which plays the crucial role in this
note. In Section 3 we use the Newton polygons that are vital to the proof of the main result.
In Section 4 we make use of the Newton polygon Nf , associated with a formal power series
f ∈ K[[x, y]] (K is an algebraically closed field of arbitrary characteristic), to compute the
invariant µ̄(f) and the number r(f) of irreducible components of the curve f(x, y) = 0.
We define the numbers µ(Nf ) and r(Nf ) which are combinatorial counterparts of µ̄(f) and
r(f). Suppose that f is a reduced power series. We give a new proof of [3, Proposition 7]
which states

µ̄(f) − µ(Nf ) ≥ r(Nf ) − r(f) ≥ 0. (1)

On the other hand, under the assumption of non-degeneracy introduced by Beelen and
Pellikaan [2, Definition 3.14] we prove that

µ̄(f) = µ(Nf ) and r(f) = r(Nf ). (2)

The inequality (1) generalizes [14, Theorem 1.2] where (1) is proved when the charac-
teristic of the field K is zero and f is convenient. Section 5 is devoted to the proofs of (1)
and (2).
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2 Prerequisites

Let K be an algebraically closed field of arbitrary characteristic. Let f ∈ K[[x, y]] be a
non-zero power series without constant term. The power series f is reduced if it has not
multiple factors.

In what follows we consider the equisingularity invariants of a reduced plane curve
{f(x, y) = 0} (see [13]): r(f) is the number of irreducible factors of f , c(f) = dimK Of/C
is the degree of the conductor, where Of = K[[x, y]]/(f), Of is the integral closure of Of

in the total quotient ring of Of and C is the conductor of Of , that is the largest ideal in
Of which remains an ideal in Of . Finally the delta invariant of f is δ(f) = dimK Of/Of .
Since Of is Gorenstein we get c(f) = 2δ(f).

If f ∈ K[[x, y]] is irreducible then the semigroup of values of f(x, y), denoted by Γ(f), is
defined as the set of intersection multiplicities i0(f, g) = dimK K[[x, y]]/(f, g) where g runs
over all power series in K[[x, y]] such that g ̸≡ 0 (mod f). This semigroup is numerical, that
is N\Γ(f) is a finite set. Denote by c the conductor of Γ(f), that is, the smallest element of
Γ(f) such that c + N ∈ Γ(f) for any nonnegative integer N . The semigroup Γ(f) admits a
minimal system of generators v0 < v1 < · · · < vg such that gcd(v0, . . . , vg) = 1. We write
Γ(f) = ⟨v0, . . . , vg⟩. Put ei := gcd(v0, . . . , vi) for 0 ≤ i ≤ h and ni = ei−1

ei
for 1 ≤ i ≤ g.

If f is irreducible then c(f) equals to the conductor c of the semigroup Γ(f). Conse-
quently c(f) =

∑g
k=1(nk − 1)vk − v0 + 1.

Let µ(f) be the Milnor number of f defined as the codimension of the ideal generated

by ∂f
∂x ,

∂f
∂y , that is µ(f) = i0

(
∂f
∂x ,

∂f
∂y

)
. The invariant Milnor number of f is defined to be

µ̄(f) = 2δ(f) − r(f) + 1 = c(f) − r(f) + 1 (see[6]). If p = 0 then µ̄(f) = µ(f) (the Milnor
formula). If p > 0 µ(f) is not an invariant and µ̄(f) plays the role of µ(f). Melle and Wall
[11], based on a result of Deligne [4], proved that µ(f) ≥ µ̄(f).

Any plane reduced curve {f(x, y) = 0} is called a tame singularity if µ(f) = µ̄(f). If
the characteristic of K is zero any singularity of plane reduced curve is tame.

Proposition 2.1.

1. For any unit u ∈ K[[x, y]] we get µ̄(uf) = µ̄(f).

2. For every reduced power series f ∈ K[[x, y]] we have µ̄(f) ≥ 0 and µ̄(f) = 0 if and
only if ordf = 1.

3. Let f = g1 · · · gs be a reduced power series where gi ∈ K[[x, y]] are pairwise coprime.
Then

µ̄(f) + s− 1 =

s∑
i=1

µ̄(gi) + 2
∑

1≤i<j≤s

i0(gi, gj).

Proof. See [5, Proposition 1.2, Remark 2.2].

If the characteristic of K is positive then, in general, we have µ(uf) ̸= µ(f) (see [3, page
63]).
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3 Newton polygons and plane curve singularities

A segment S ⊂ R2 is a Newton edge if its vertices (α, β), (α′, β′) lie in N2 and α < α′,
β′ < β. Put |S|1 = α′ − α, |S|2 = β − β′, r(S) = gcd(|S|1, |S|2) If S, T are two Newton

edges we define [S, T ] := min{|S|1|T |2, |S|2|T |1}. If |S|1
|S|2 < |T |1

|T |2 then [S, T ] = |S|1|T |2 (see

Figure 1).

|S|1|T |2

S

T

α

β

|S|1 |T |1

|S|2

|T |2

Figure 1: [S, T ] = |S|1|T |2

Let K be an algebraically closed field of characteristic p ≥ 0. Consider f ∈ K[[x, y]] a
nonzero power series without constant term. Write f =

∑
α,β cαβx

αyβ . The support of f

is supp f = {(α, β) ∈ N2 : cαβ ̸= 0}. The Newton diagram ∆(f) of f is the convex hull of
supp f + (R≥0)2. The Newton polygon Nf of f is the set of compact faces of the boundary
of ∆(f). We put |Nf |1 =

∑
S∈Nf

|S|1, |Nf |2 =
∑

S∈Nf
|S|2, [Nf ,Nf ] =

∑
S,T∈Nf

[S, T ] and

r(Nf ) =
∑

S∈Nf
r(S) + k + l, where k, l are maximal such that xkyl divides f .

A power series f ∈ K[[x, y]] is convenient if f(x, 0)f(0, y) ̸= 0; otherwise we will say
that f is non-convenient. When f is convenient the curve f(x, y) = 0 does not contain the
axes. Hence there is an edge F ∈ Nf with the vertex (m, 0), where m = ordf(x, 0) and
there is E ∈ Nf with the vertex (0, n) where n = ordf(0, y). The edges F and E are not
necessarily different.

Let f(x, y) =
∑

α,β cαβx
αyβ ∈ K[[x, y]]. Recall that the order of f is ordf = min{α+β :

cαβ ̸= 0} and the initial part of f is inf =
∑

α+β=ordf
cαβx

αyβ .

For any segment S ∈ Nf we put in(f, S) =
∑

(α,β)∈S cαβx
αyβ . Let xα(S)yβ(S) be the

monomial of highest degree dividing in(f, S). Then in(f, S) = xα(S)yβ(S)in(f, S) where
in(f, S) is a convenient power series. We say that f is non-degenerate if in(f, S) is reduced
for every S ∈ Nf , that is it does not have multiple factors.

Remark 3.1. A power series f is non-degenerate if and only if for any segment S ∈ Nf
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the solutions of the system 
∂
∂x in(f, S) = 0
∂
∂y in(f, S) = 0

in(f, S) = 0

are contained in {xy = 0} (see [8, Proposition 3.5]). On the other hand f is non-degenerate
in the strong sense (Kouchnirenko [9]) if the solutions of the system{ ∂

∂x in(f, S) = 0
∂
∂y in(f, S) = 0

are contained in {xy = 0} for any segment S ∈ Nf . In zero characteristic both definitions
are equivalent (see [2, Remark 3.15]). Nevertheless if the characteristic of K is p > 0 then
the power series f(x, y) = xp + yp+1 is non-degenerate but it is not non-degenerate in the
strong sense.

Assume that f is a convenient power series. Recall that m = ordf(x, 0) and n =
ordf(0, y). We put

µ(Nf ) = [Nf ,Nf ] − |Nf |1 − |Nf |2 + 1 (3)

and

δ(Nf ) =
1

2
(µ(Nf ) + r(Nf ) − 1) .

Note that

• µ(Nf ) = 2(area of the polygon bounded by Nf and the axes) − n − m + 1, which is
called the Newton number of f .

• r(Nf ) = (number of integer points on Nf ) − 1, and

• δ(Nf ) = number of integer points lying below Nf but not on the axes. This is a
consequence of Pick’s formula.

If f is a reduced power series (not necessarily convenient) then we define:

µ(Nf ) = sup
m∈N

{µ(Nfm) : fm = f + xm + ym}. (4)

Like in the case of convenient power series we put

δ(Nf ) =
1

2
(µ(Nf ) + r(Nf ) − 1) (5)

for any reduced power series.
Observe that if f is convenient then the two definitions of µ(Nf ), (3) and (4), coincide.
Let f ∈ K[[x, y]] be a reduced power series and let xd1yd2 be the monomial of highest degree
dividing f . We have f = xd1yd2g where g ∈ K[[x, y]] is a convenient power series or a unit.
Since f is reduced d1, d2 ≤ 1 and (d1, d2) = (0, 0) if and only if f is convenient. We have
[Nf ,Nf ] = 2(the area between Nf and the lines x− d1 = 0, y − d2 = 0).

The following nice formula is due to Lenarcik:
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Lemma 3.2. ([12, Proposition 61]) Let f be a reduced power series of order bigger than one.
Let A1 be the area limited by Nf and the lines x−1 = 0 and y−1 = 0. If (m1, 1), (1, n1) ∈ Nf

then µ(Nf ) = 2A1 + m1 + n1 − 1.

Lemma 3.3. Let A be the area between the Newton polygon of f = xd1yd2g ∈ K[[x, y]] and
the lines x − d1 = 0 and y − d2 = 0. Let m = ordf(x, 0), n = ordf(0, y) (by convention
ord0 = +∞). Then

A =


A1 + m+m1−1

2 + n+n1−1
2 , |Nf |1 = m, |Nf |2 = n if (d1, d2) = (0, 0)

A1 + m1+m−2
2 , |Nf |1 = m− 1, |Nf |2 = n1 if (d1, d2) = (1, 0)

A1 + n1+n−2
2 , |Nf |1 = m1, |Nf |2 = n− 1 if (d1, d2) = (0, 1)

A1, |Nf |1 = m1 − 1, |Nf |2 = n1 − 1 if (d1, d2) = (1, 1).

(6)

Proof. It is a consequence of Lemma 3.2.

Lemma 3.4. ([15, p.146]) Let f = xd1yd2g ∈ K[[x, y]] be a reduced power series with
g(0, 0) = 0. Then

µ(Nf ) =


[Nf ,Nf ] − |Nf |1 − |Nf |2 + 1 if (d1, d2) = (0, 0)
[Nf ,Nf ] − |Nf |1 + |Nf |2 if (d1, d2) = (1, 0)
[Nf ,Nf ] + |Nf |1 − |Nf |2 if (d1, d2) = (0, 1)
[Nf ,Nf ] + |Nf |1 + |Nf |2 + 1 if (d1, d2) = (1, 1).

(7)

Proof. We have [Nf ,Nf ] = 2A and by Lemma 3.2, µ(Nf ) = 2A1+m1+n1−1. Use Lemma
3.3.

1

α

β

|Nf |1

|Nf |2

1 α

β

|Nf |1

|Nf |2

Figure 2: f(x, y) = xg(x, y) and f(x, y) = yg(x, y)

A power series f will be called elementary if f is convenient and Nf contains only one
edge S. The pair (m,n) = (|S|1, |S|2) = (ordf(x, 0), ordf(0, y)) is by definition the bidegree
of f and we will denote it by bideg(f). In what follows we write Inf = in(f, S). After [13,
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1

1 α

β

|Nf |1

|Nf |2

Figure 3: f(x, y) = xyg(x, y)

Chapter 2], every convenient irreducible power series is elementary. If f, g are elementary

of bidegree (m,n) resp. (m′, n′) such that
m

n
=

m′

n′ , then fg is elementary of bidegree

(m + m′, n + n′). Moreover, Infg = Inf · In g.

Lemma 3.5. If f ∈ K[[x, y]] is elementary of bidegree (m,n) and d = gcd(m,n) then
Inf(x, y) = F (xm/d, yn/d) where F = F (u, v) is a homogeneous form of degree d. Moreover,

if f is irreducible then Inf(x, y) =
(
axm/d + byn/d

)d
.

Proof. The polynomial Inf is a linear combination of monomials xαyβ , where αn + βm =
nm. It is easy to check that α = m

d α1, β = m
d β1 for some α1, β1 ∈ N. Moreover, α1+β1 = d.

Therefore xαyβ = x
m
d α1y

n
d β1 and Inf = F (x

m
d y

n
d ), where F = F (u, v) is a homogeneous

polynomial of degree d. Let F (u, v) =
∏s

i=1(aiu + biv)ei where aibj ̸= ajbi for i ̸= j. Then
Inf = F (x

m
d y

n
d ) =

∏s
i=1(aix

m
d + biy

n
d )ei . By Hensel’s lemma (see [1, Lemma A.1], [10]) we

get f(x, y) = g1(x, y) · · · gs(x, y) ∈ K[[x, y]] where Ingi = (aix
m
d +biy

n
d )ei for i ∈ {1, . . . , s}.

If f is irreducible then s = 1, d = e1, f = g1 and Inf = In g1 = (a1x
m
d + b1y

n
d )d.

Corollary 3.6. If f is non-degenerate, convenient and irreducible power series of bidegree
(m,n) then gcd(n,m) = 1.

Lemma 3.7 (Newton factorization). Let f ∈ K[[x, y]] be convenient. Then f =
∏

S∈Nf
fS

in K[[x, y]] where fS are elementary. Moreover, the bidegree of fS is (|S|1, |S|2) and InfS =
c · in(f, S), for some c ∈ K\{0}.

Proof. Firstly we prove that any convenient power series is a product of elementary power
series. If f is elementary of bidegree (m,n) then we put I(f) = m

n . Let f = f1 · · · fr be
the factorization into irreducible factors of a convenient power series. Let {I(fi) : 1 ≤
i ≤ r} = {ωj : 1 ≤ j ≤ s} where ω1 < ω2 < · · · < ωs. For any j ∈ {1, . . . , s} we put
Aj := {k ∈ {1, . . . , s} : I(fk) = ωj} and gj :=

∏
i∈Aj

fi. Then gj is an elementary power

series and f = g1 · · · gs with I(gi) < I(gj) for any i ̸= j. Let bideg(gk) = (mk, nk). Since
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m1

n1
< · · · < ms

ns
the points vk =

(∑k
i=1 mi,

∑s
i=k+1 ni

)
with k ∈ {1, . . . , s} (by convention

the empty sum equals zero) are vertices of Nf . Let S(k) be the segment of Nf with vertices
vk−1 and vk for k ∈ {1, . . . , s}, so (|S(k)|1, |S(k)|2) = (mk, nk). If S ∈ Nf then S = S(k) for
some k ∈ {1, . . . , s} and we put fS = gk. Therefore f =

∏
S∈Nf

fS where fS are elementary,

bideg(fS) = (|S|1, |S|2) and InfS = c · in(f, S) for some c ∈ K\{0}.

Corollary 3.8. If f ∈ K[[x, y]] is non-degenerate then fS are non-degenerate for any
S ∈ Nf .

For any two power series f, g ∈ K[[x, y]] we put i0(f, g) := dimK K[[x, y]]/(f, g) and call it
the intersection multiplicity of f and g.

Lemma 3.9. If Nf = {S} and Ng = {T} are elementary then i0(f, g) ≥ [S, T ] with equality
if and only if S and T are not parallel or the system of equations Inf = 0, Ing = 0 has the
unique solution (x, y) = (0, 0).

Proof. Put bideg(f) := (m,n) and bideg(g) := (m1, n1). We have to check that i0(f, g) ≥
min{mn1,m1n} with equality if and only if m

n = m1

n1
or the system of equations Inf = 0,

Ing = 0 has the only solution (x, y) = (0, 0). Put f(x, y) =
∑

ij aijx
iyj . Let −→w = (n,m) ∈

N2
+. Then ord−→w (f) := inf{ni + jm : aij ̸= 0} = nm and in−→w f :=

∑
in+jm=nm aijx

iyj =
Inf . Let us distinguish two cases.

Case 1: m
n ̸= m1

n1
. We may assume m

n < m1

n1
. Then ord−→w (g) = mn1 = min{mn1,m1n} and

in−→w g = cyn1 for c ̸= 0. Therefore the system of equations in−→w f = 0 and in−→w g = 0 has the
unique solution (x, y) = (0, 0) and we get

i0(f, g) =
ord−→w ford−→w g

mn
= ord−→w g = mn1 = min{mn1,m1n},

by [6, Lemma A.1].

Case 2: m
n = m1

n1
. We check ord−→w (g) = mn1 and in−→w g = Ing. Again by [6, Lemma A.1] we

get i0(f, g) ≥ ord−→w g = mn1 = nm1 with equality if the system Inf = 0, Ing = 0 has the
unique solution (x, y) = (0, 0).

4 Main result

The following theorem is the main result of this note:

Theorem 4.1. Let f ∈ K[[x, y]] be a reduced power series. Then

1. µ̄(f) − µ(Nf ) ≥ r(Nf ) − r(f) ≥ 0.

2. If f is non-degenerate then µ̄(f) = µ(Nf ) and r(Nf ) = r(f).
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The first statement of Theorem 4.1 was proved in [3, Proposition 7]. We provide a new
and simple proof of it. The proof of Theorem 4.1 is given in Section 5.

As an immediate consequence of Theorem 4.1 we have

Corollary 4.2. ([3, Lemma 4]) Let f ∈ K[[x, y]] be a reduced power series. We have
r(f) ≤ r(Nf ) and if f is non-degenerate then r(f) = r(Nf ).

Corollary 4.3. ([2, Proposition 3.17], [3, Proposition 5]) Let f ∈ K[[x, y]]. We have
δ(Nf ) ≤ δ(f) and if f is non-degenerate then δ(Nf ) = δ(f).

Proof. From the definition of the invariant Milnor number of f and the equality (5) we have
µ̄(f) − µ(Nf ) = 2(δ(f) − δ(Nf )) + r(Nf ) − r(f). We use Theorem 4.1.

Corollary 4.4. ([3, Theorem 9]) Let f ∈ K[[x, y]] be a reduced power series. If f is strongly
non-degenerate then f is tame, i.e., µ(f) = µ̄(f).

Proof. By Kouchnirenko’s planar theorem [3, Proposition 4] we have µ(f) = µ(Nf ). On
the other hand by Theorem 4.1 we get µ̄(f) = µ(Nf ). Therefore µ(f) = µ̄(f).

5 Proof of the main result

We begin with the proof of Theorem 4.1 for convenient power series. Firstly we consider
the case of elementary power series. Let f ∈ K[[x, y]] be an elementary power series of
bidegree (m,n). Let d := gcd(m,n). Then the theorem reduces to the following statement:

µ̄(f) − (n− 1)(m− 1) ≥ d− r(f) ≥ 0. (8)

If f is non-degenerate then µ̄(f) = (n− 1)(m− 1) and r(f) = d.

We distinguish two cases. Suppose first that f is irreducible, that is r(f) = 1.

Lemma 5.1. Let f ∈ K[[x, y]] be irreducible with semigroup of values Γ(f) = ⟨v0, v1, . . . , vh⟩.
If c is the conductor of Γ(f) then c ≥ (v0 − 1)(v1 − 1) + gcd(v0, v1) − 1. The equality
c = (v0 − 1)(v1 − 1) holds if and only if gcd(v0, v1) = 1.

Proof. Let us define Puiseux characteristic sequence b0, b1, . . . , bh by putting b0 = v0, bk =
vk−

∑k−1
i=1 (ni−1)vi for k ∈ {1, . . . , h}. Note that gcd(b0, . . . , bk) = ek for k ∈ {0, . . . , h} and

b0 < b1 < · · · < bh. Moreover c =
∑h

k=1(ek−1 − ek)(bk − 1) (see for example [13, Chapter
3, p. 58]. If e1 = 1 then c = (e0 − e1)(b1 − 1) = (b0 − 1)(b1 − 1). Therefore we may assume
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that h > 1. We have

c = (e0 − e1)(b1 − 1) +

h∑
k=2

(ek−1 − ek)(bk − 1)

≥ (e0 − e1)(b1 − 1) +

h∑
k=2

(ek−1 − ek)(b2 − 1)

= (e0 − e1)(b1 − 1) + (e1 − 1)(b2 − 1)

= (e0 − e1)(b1 − 1) + (e1 − 1)(b2 − b1 + b1 − 1)

= (e0 − 1)(b1 − 1) + (e1 − 1)(b2 − b1)

≥ (b0 − 1)(b1 − 1) + e1 − 1, since b2 − b1 ≥ 1.

Suppose that r(f) = 1. Since µ̄(f) = c(f) = c we have, by Lemma 5.1, µ̄(f) ≥
(v0 − 1)(v1 − 1) + gcd(v0, v1) − 1. The power series f being unitangent we have m =
ordf(0, y) = ordf or n = ordf(x, 0) = ordf . Assume that m = ordf . Then m ≤ n ≤ v1
(see [7]). If the axis y = 0 has maximal contact with the curve f(x, y) = 0 then n = v1 and
by Lemma 5.1 we get

µ̄(f) ≥ (v0 − 1)(v1 − 1) + gcd(v0, v1) − 1 = (m− 1)(n− 1) + d− 1 ≥ 0.

If n < v1 then n ≡ 0 (mod m), d = gcd(m,n) = m and we get

µ̄(f) ≥ (v0 − 1)(v1 − 1) = (m− 1)(v1 − n + n− 1)

= (m− 1)(n− 1) + (v1 − 1)(m− 1)

≥ (m− 1)(n− 1) + m− 1 = (m− 1)(n− 1) + d− 1.

If m = n then µ̄(f) ≥ n(n− 1) (see [13, p. 88]).
Suppose that f is non-degenerate. Then, by Corollary 3.6, d = gcd(n,m) = 1. Conse-
quently, by Lemma 5.1, µ̄(f) = (m− 1)(n− 1) + d− 1.

Suppose now that f is elementary but r(f) > 1. Recall that any irreducible convenient
power series is elementary.

Lemma 5.2. Let f be an elementary power series with bideg(f) = (m,n) and f = f1 · · · fr
the factorization of f into irreducible factors with bideg(fi) = (mi, ni). If d = gcd(m,n)
and di = gcd(mi, ni) then

1. mi

di
= m

d and ni

di
= n

d for any i ∈ {1, . . . , r}.

2.
∑r

i=1 di = d.

Moreover, r ≤ d with equality if f is non-degenerate.
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Proof. By Lemma 3.5 we have Inf(x, y) = F (xm/d, yn/d) for some homogeneous polynomial
F of degree d. Since fi are elementary Inf(x, y) = Inf1(x, y) · · · Infr(x, y). By Lemma 3.5

Infi(x, y) = (aix
mi
di + biy

ni
di )di for some ai, bi ∈ K. Then aix

mi
di + biy

ni
di is an irreducible

factor of F (xm/d, yn/d), which implies mi

di
= m

d and ni

di
= n

d for any i ∈ {1, . . . , r}. Since

f(x, 0) =
∏r

i=1 fi(x, 0) we have m = ordf(x, 0) =
∑r

i=1 ordfi(x, 0) =
∑r

i=1 mi =
∑r

i=1 di
m
d

whence
∑r

i=1 di = d. Obviously r ≤ d. If f is non-degenerate then fi are non-degenerate
and di = 1 for i ∈ {1, . . . , r} by Corollary 3.6. Therefore r = d.

By the third statement of Proposition 2.1 we get

µ̄(f) + r − 1 =

r∑
i=1

µ̄(fi) + 2
∑

1≤i<j≤r

i0(fi, fj).

By the irreducible elementary case we have µ̄(fi) ≥
(m
d
di − 1

)(n
d
di − 1

)
+(di−1). More-

over, by Lemma 3.9, i0(fi, fj) ≥
mn

d2
didj . Therefore we get

µ̄(f) + r − 1 ≥
r∑

i=1

[(m
d
di − 1

)(n
d
di − 1

)
+ (di − 1)

]
+ 2

∑
1≤i<j≤r

mn

d2
didj

=
mn

d2

 r∑
i=1

d2i + 2
∑

1≤i<j≤r

didj

 +

(
−n−m

d
+ 1

) r∑
i=1

di

= mn− n−m + d.

Whence µ̄(f) + r − 1 ≥ (n− 1)(m− 1) + d− 1 which implies the inequality (8). If f is
non-degenerate then di = 1 for i ∈ {1, . . . , r}, µ̄(fi) =

(
m
d − 1

) (
n
d − 1

)
and i0(fi, fj) = mn

d2

and the inequalities become equalities. Moreover, r(f) = r = d by Lemma 5.2.

Let us prove now the general case, that is σ := ♯Nf > 1. Let f =
∏

S∈Nf
fS be the

Newton factorization of f . By the third statement of Proposition 2.1 we get

µ̄(f) + σ − 1 =
∑

S∈Nf

µ̄(fS) +
∑
S ̸=T

i0(fS , fT ) =
∑

S∈Nf

µ̄(fS) +
∑
S ̸=T

[S, T ],

where S and T are not parallel. Since fS is elementary of bidegree (|S|1, |S|2) we get

µ̄(fS) ≥ (|S|1 − 1)(|S|2 − 1) + gcd(|S|1, |S|2) − r(fS).

A simple calculation shows that

µ̄(f) + σ − 1 ≥ [Nf ,Nf ] − |Nf |1 − |Nf |2 + σ + r(Nf ) − r(f).

Therefore µ̄(f) ≥ µ(Nf )+r(Nf )−r(f). If f is non-degenerate then fS is non-degenerate.
Thus µ̄(fS) = µ(NfS ) and r(fS) = r(NfS ) = gcd(|S|1, |S|2). Using the Newton factoriza-
tion we get µ(f) = µ(Nf ). Obviously r(f) =

∑
S r(fS) =

∑
S gcd(|S|1, |S|2) = r(Nf ).
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It remains to prove Theorem 4.1 for non-convenient power series.

Let f(x, y) = xd1yd2g(x, y) where g = g(x, y) is a convenient reduced power series or a
unit. We assume that g(0, 0) = 0 (if g(0, 0) ̸= 0 then µ(f) = µ(Nf ) and r(f) = µ(Nf )).

Because the length of a segment is the same on parallel axes we have

|Nf |i = |Ng|i for i = 1, 2, [Nf ,Nf ] = [Ng,Ng] and r(Nf ) − r(f) = r(Ng) − r(g). (9)

Since we have already proved Theorem 4.1 for convenient power series we get

µ(g) − µ(Ng) ≥ r(Ng) − r(g) ≥ 0, (10)

and the equalities µ(g) = µ(Ng) and r(Ng) = r(g) holding for non-degenerate g.
By Proposition 2.1 we get

µ̄(f) + 2 = µ̄(x) + µ̄(y) + µ̄(g) + 2i0(g, x) + 2i0(g, y) + 2i0(x, y)

= µ̄(g) + 2ordg(0, y) + 2ordg(x, 0) + 2,

and

µ̄(f) = µ̄(g) + 2|Ng|1 + 2|Ng|2
≥ µ(Ng) + r(Ng) − r(g) + 2|Ng|1 + 2|Ng|2
= [Ng,Ng] + |Ng|1 + |Ng|2 + 1 + r(Ng) − r(g)

= [Nf ,Nf ] + |Nf |1 + |Nf |2 + 1 + r(Nf ) − r(f)

≥ µ(Nf ) + r(Nf ) − r(f).

If f is non-degenerate then g is non-degenerate and we get µ̄(f) = µ(Nf ) and r(Nf ) =
r(f).
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venient singularities, in T. Krasiński, S. Spodzieja, editors, Analytic and Algebraic
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