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Abstract

This paper is concerned with stability analysis of left and right Atkinson types of
unbounded linear operators on Banach spaces by using the measure of non strict sin-
gularity. Under quite general assumptions, we first present a new characterization on
the left (right) Weyl spectra of unbounded linear operators which will be used to prove
certain stability properties of left (right) Weyl operators with perturbation. Therefore,
a new description of left (right) Weyl spectra of unbounded operator matrices with
non maximal domain is presented to reach the validity of the theoretical results which
led to significant advances in the spectral theory of operators matrices.
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1 Introduction

The theory of the essential spectra of linear operators in Banach space is a modern
section of the special analysis widely used in the mathematical and physical sense when
resolving a number of application that can be formulated in terms of linear operators.
More precisely, the perturbation theory of semi-Fredholm and Fredholm of linear operators
in Banach spaces was done by different authors, see [3, 5, 11, 12, 14, 20]. More general
than these classes of Fredholm operators are the classes of semi Fredholm operators which
have complemented range and null space, which are namely known as the classes of the left
and right Fredholm operators or left and right Atkinson operators. In the literature, the
investigation of this kind of classes attracted the attention of many mathematicians and
proved a vast body of important results in the theory of Fredholm operators. An interested
reader can find some basic information on this kind of Fredholm theory in some works funded
by G. Gonzalez in [10], R. Harte in [11], V. Müller in [20] or S. C̆. Z̆ivković-Z̆latanović in
[28, 29].

On the other side, the notion of measure of non strict singularity, ∆(.), has witnessed
an explosive development in spectral theory. Many years later, this kind of measure has
been enriched in the literature by presenting a real development of some powerful methods
for the study of some spectral problems such that the problem of the characterization and
the stability of Schechter essential spectrum. This concept of study was performed via
many subject of important works and was familiar to many mathematicians, we can quote



392 On perturbation theory of semi Fredholm operators

especially the papers of [1, 2, 18, 19]. More precisely, in [18], N. Moalla used this class of
perturbations in order to extend some earlier results of the characterization of the Weyl
spectrum, σw(.). In fact, the author proves, for T ∈ C(X), that:

σw(T ) :=
⋂

K∈ST (X)

σ(T +K) :=
⋂

K∈DT (X)

σ(T +K),

where

ST (X) :=
{
K ∈ L(X) : ∆([(λ− T −K)−1K]n) < 1, for some n ∈ N∗ and ∀λ ∈ ρ(T +K)

}
and

DT (X) :=
{
K ∈ L(X) : ∆([K(λ− T −K)−1]n) < 1, for some n ∈ N∗ and ∀λ ∈ ρ(T +K)

}
.

Motivated by the works mentioned above and keep the interesting, in the first part of this
paper, of the investigation of left and right Weyl spectra in the theory of linear operators.
Indeed, the use of this notion of measure remains a powerful tool in spectral theory since
this class is not a two-sided closed ideal of the set of bounded operators. So, we aim in
this paper to use this kind of the measure in order to enlarge some known results that are
widely studied in [18]. In particular, we are interested to characterize the left and right
Weyl spectra of closed, densely defined linear operator in Banach space as well as to develop
some spectral properties of left and right Weyl operators via this kind of measure and the
definition of the left and right Atkinson linear operators and their properties. In fact, we
prove for n ∈ N∗ and T ∈ C(X), that:

σl
w(T ) :=

⋂
K∈Sl

n(X)

σl(T +K) and σr
w(T ) :=

⋂
K∈Sr

n(X)

σr(T +K)

where:
Sl
n(X) := {K ∈ L(X) : ∆([(µI − T −K)lK]n) < 1, ∀ µ ∈ ρl(T +K)}

and
Sr
n(X) := {K ∈ L(X) : ∆([K(µI − T −K)r]n) < 1, ∀ µ ∈ ρr(T +K)}.

In the last section, we will apply the theoretical results obtained in Section 3 to provide a
new description of some essential spectra in the theory of unbounded block 2 × 2 operator
matrix with non maximal domain on the product of Banach spaces X × Y considered as
the form:

A0 :=

(
A B
C D

)
for given unbounded operators entries and defined with non maximal domain that is with
domain containing one supplemented condition relating their components entries with linear
operators ΨX and ΨY as:

D(A0) :=

{(
f
g

)
∈ (D(A) ∩ D(C))× (D(B) ∩ D(D)) : ΨXf = ΨY g

}
,

where the linear operators ΨX and ΨY are defined as:

ΨX : X −→ Z and ΨY : Y −→ Z, for Banach space Z.
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Our central interest in Section 4 is to address a fine characterization on the left-right
Weyl spectra of an unbounded operator matrix with non maximal domain and we gather
some conditions that we must impose on their component entries, in order to improve
and ameliorate under weaker assumptions some results recently obtained by the authors in
[6, 19]. Specifically, we prove via this class of measure that:

σ∗
w(A) = σ∗

w(A1) ∪ σ∗
w(D),

where A1 denotes the restriction of A to D(A) ∩N(ΨX) and σ∗
w(.) = {σl

w(.), σ
r
w(.)}.

To make the paper easily accessible, we proceed as follows:
In Section 2, we shall some classical definitions and properties of linear operators are needed
throughout the paper. Section 3 is dedicated to provide the perturbation problem of left and
right Weyl of linear operators based on the theory of the measure of non strict singularity.
The main results of this section are Theorems 3.2, 3.6 and 3.7. We apply the results obtained
in the previous section, to study in Section 4, the stability and to give a new description
of left and right Weyl spectra of unbounded operator matrix with non maximal domain
involving the class of measure of non strictly singular perturbation.

2 Notations and basic definitions

To outline the main topics of this paper, we need firstly to introduce some standard
notations and definitions.

Let X and Y be two Banach spaces. We denote by L(X,Y ) (resp. C(X,Y )) the set of
all bounded (resp. closed, densely defined) linear operators from X into Y. The subspace
of all compact operators of L(X,Y ) is designed by K(X,Y ). For T ∈ C(X,Y ), we write
N(T ) ⊂ X and R(T ) for the null-space and R(T ) ⊂ Y for the range of T. The nullity, α(T ),
of T is defined as the dimension of N(T ) and the deficiency β(T ) of T is defined as the
codimension of R(T ).
Let Gl(X,Y ) (resp. Gr(X,Y )) denote the set of all left (resp. right) invertible operators
from X into Y . It is well-known that T ∈ Gl(X,Y ) (resp. T ∈ Gr(X,Y )) if and only if T is
injective and R(T ) is a closed and complemented subspace of Y (resp. T is onto and N(T )
is a complemented subspace of X).
The set of upper (resp. lower) semi-Fredholm operators from X into Y is defined as:

Φ+(X,Y ) := {T ∈ C(X,Y ) : α(T ) < ∞ and R(T ) is closed in Y }
(resp.

Φ−(X,Y ) := {T ∈ C(X,Y ) : β(T ) < ∞}).

Moreover, set of Fredholm (resp. semi-Fredholm) operators is defined by:

Φ(X,Y ) := Φ−(X,Y ) ∩ Φ+(X,Y ), (resp. Φ±(X,Y ) := Φ−(X,Y ) ∪ Φ+(X,Y )).

For T ∈ Φ±(X,Y ), its index is defined by the quantity: i(T ) = α(T )− β(T ).

The set of left Fredholm (resp. right Fredholm) operators is defined as:

Φl(X,Y ) := {T ∈ Φ+(X,Y ) : R(T ) is a complemented subset of Y }
(resp.
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Φr(X,Y ) := {T ∈ Φ−(X,Y ) : N(T ) is a complemented subset of X}).
Clearly, the open sets Φl(X,Y ) and Φr(X,Y ) satisfying the following inclusions:

Φ(X,Y ) ⊆ Φl(X,Y ) ⊆ Φ+(X,Y ) and Φ(X,Y ) ⊆ Φr(X,Y ) ⊆ Φ−(X,Y ).

The sets of left and right Weyl operators are defined by:

W l(X,Y ) := {T ∈ C(X,Y ) : T ∈ Φl(X,Y ) and i(T ) ≤ 0}
and

Wr(X,Y ) := {T ∈ C(X,Y ) : T ∈ Φr(X,Y ) and i(T ) ≥ 0}.
Hence, the set of Weyl operators W(X,Y ) is defined by:

W(X,Y ) := W l(X,Y ) ∩Wr(X,Y ) := {T ∈ Φ(X,Y ) : i(T ) = 0}.

Remark 2.1. If X = Y , then the sets L(X,X), C(X,X), K(X,X), Gl(X,X), Gr(X,X),
G(X,X), Φ+(X,X), Φ−(X,X), Φl(X,X), Φr(X,X), Φ(X,X), W l(X,X), Wr(X,X) and
W(X,X) are replaced, respectively, by L(X), C(X), K(X), Gl(X), Gr(X), G(X), Φ+(X),
Φ−(X), Φl(X), Φr(X), Φ(X), W l(X), Wr(X) and W(X).

Let T ∈ C(X). It follows from the closedness of T that D(T ) endowed with the graph
norm ∥.∥T (∥x∥T = ∥x∥ + ∥Tx∥) is a Banach space denoted by XT . Clearly, for x ∈ D(T )
we have ∥Tx∥ ≤ ∥x∥T . Therefore, T ∈ L(XT , X). Let K be a linear operator on X. If
D(T ) ⊂ D(K), then K will be called T -defined, its restriction to D(T ) will be denoted by

K̂. Moreover, if K̂ ∈ L(XT , X), we say that K is T -bounded.

Let K be an arbitrary T -bounded operator, hence we can consider T and K as operators
from XT into X, they are denoted by T̂ and K̂ respectively, they belong to L(XT , X).
Furthermore, we have the obvious relations:

α(T̂ ) = α(T ), β(T̂ ) = β(T ), R(T̂ ) = R(T ),

α(T̂ + K̂) = α(T +K),

β(T̂ + K̂) = β(T +K) and R(T̂ + K̂) = R(T +K).

(1)

Let T ∈ C(X), we define the resolvent set (resp. the spectrum) of T by:

ρ(T ) := {λ ∈ C : λI − T has a bounded inverse} (resp. σ(T ) := C\ρ(T ))

and the left (resp. right) spectrum of T by:

σl(T ) := {λ ∈ C : λI − T /∈ Gl(X)} := C\ρl(T )

(resp.

σr(T ) := {λ ∈ C : λI − T /∈ Gr(X)} := C\ρr(T )).

In this research work, we are basically concerned with the following essential spectra
introduced in [7]:
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Definition 2.2. Let T ∈ C(X). We define:

(i) the left Weyl spectrum by:

σl
w(T ) :=

⋂
K∈K(X)

σl(T +K).

(ii) the right Weyl spectrum by:

σr
w(T ) :=

⋂
K∈K(X)

σr(T +K).

Following Definition 2.2, we deduce the Weyl spectrum as:

σw(T ) := σl
w(T ) ∪ σr

w(T ).

The following result gives a characterization of left and right Weyl spectra by means of
left and right Fredholm operators.

Proposition 2.3. [7] Let T ∈ C(X), then

λ /∈ σl
w(T ) ⇐⇒ λI − T ∈ W l(X) ⇐⇒ λI − T ∈ Φl(X) and i(λI − T ) ≤ 0.

λ /∈ σr
w(T ) ⇐⇒ λI − T ∈ Wr(X) ⇐⇒ λI − T ∈ Φr(X) and i(λI − T ) ≥ 0.

The obvious Weyl spectra satisfies the following inclusions:

σl
ef (T ) ⊆ σl

w(T ) ⊆ σw(T ) and σr
ef (T ) ⊆ σr

w(T ) ⊆ σw(T ),

where the left (resp. right)-Fredholm spectrum of T, denoted by σl
ef (T ) (resp. σr

ef (T )),

is defined as σl
ef (T ) := C\Φl

T (X) (resp. σr
ef (T ) := C\Φr

T (X)), which Φ∗
T (X) := {λ ∈ C :

λI − T ∈ Φ∗(X)}, for Φ∗(X) = {Φl(X),Φr(X)}.

At this level of analysis, we shall recall some basic definitions for bounded operators on
Banach spaces that are useful in the remainder of this paper.

Definition 2.4. An operator T ∈ L(X,Y ) is said to be strictly singular from X into Y if
the restriction of T to any infinite-dimensional subspace of X is not an homeomorphism.

Let SS(X,Y ) denote the set of strictly singular operators from X to Y. The concept of
strictly singular operators was introduced in the pioneering paper by T. Kato [15]. In
general, strictly singular operators are not compact (see [9, 15]). Note that, SS(X,Y ) is a
closed subspace of L(X,Y ). If X = Y, SS(X) := SS(X,X) is a closed two-sided ideal of
L(X) containing K(X). If X is a separable Hilbert space, then SS(X) = K(X). For basic
properties of strictly singular operators, we refer readers to [9, 17, 26, 27].

Definition 2.5. [16] Let T : D(T ) ⊂ X −→ Y be a linear operator.
If T is closed and S is a closable linear operator with domain D(S) such that S = T , then
D(S) is called core of T.
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3 A characterization of the left-right Weyl spectra in-
volving measure of non strict singularity

The notion of measure of non strict singularity dating backs to 1972, was introduced in
the pioneering paper of M. Schechter in [24] as generalization of the class of strictly singular
operators as follows:

Definition 3.1. For T ∈ L(X), we define the measure of non strict singularity of T, denoted
by ∆(T ) as:

∆M (T ) := inf
N⊂M

γ(T |N ) and ∆(T ) := sup
M⊂X

∆M (T ),

where M,N represent infinite dimensional subspace of X and T |N denotes the restriction
of T with the subspace N and γ(.) express the Hausdorff measure of non compactness of
linear bounded operators.

In the following, we give a refinement characterization of left and right Weyl spectra
of closed densely defined linear operators involving this concept of measure of non strict
singularity.

Theorem 3.2. Let T ∈ C(X). Then, the following assertions hold, for some n ∈ N∗ :

(i)

σl
w(T ) :=

⋂
K∈Sl

n(X)

σl(T +K),

where:
Sl
n(X) := {K ∈ L(X) : ∆([(µI − T −K)lK]n) < 1, ∀ µ ∈ ρl(T +K)}.

(ii)

σr
w(T ) :=

⋂
K∈Sr

n(X)

σr(T +K),

where:
Sr
n(X) := {K ∈ L(X) : ∆([K(µI − T −K)r]n) < 1, ∀ µ ∈ ρr(T +K)}.

Proof.

(i) Based on the fact that K(X) ⊂ Sl
n(X), we infer that⋂

K∈Sl
n(X)

σl(T +K) ⊂
⋂

K∈K(X)

σl(T +K) := σl
w(T ).

To prove the reverse inclusion, let us consider λ /∈
⋂

K∈Sl
n(X)

σl(T +K). Thus, there exists

K ∈ Sl
n(X) such that λ ∈ ρl(T +K). Then, there exist (λI − T −K)l ∈ L(X,D(T )) such

that
(λI − T −K)l(λI − T −K) = ID(T ).

This shows that

(λI − T −K)l(λI − T ) = ID(T ) + (λI − T −K)lK ⊂ IX + (λI − T −K)lK.
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Since K ∈ Sl
n(X), we infer that ∆([(λI − T −K)lK]n) < 1. According to Proposition 2.3

in [18], we obtain IX + (λI − T −K)lK ∈ Φ(X) with i(I + (λI − T −K)lK) = 0. So, we
deduce that (λI − T − K)l(λI − T ) ∈ Φ(X) ⊂ Φl(X). Consequently, the use of Theorem
2.3 in [10], allows us to conclude that

λI − T ∈ Φl(X).

Since T +K ∈ C(X), we can make D(T +K) = D(T ) into a Banach space by equipping it
with the graph norm ∥.∥T . Let XT = (D(T ), ∥.∥T ) be the Banach space for the graph norm

∥.∥T . Hence, we can regard T as an operator from XT into X. This will be denoted by T̂ .

Clearly, T̂+K̂ and K̂ are bounded operators from XT intoX and (λI−T̂−K̂)l ∈ L(X,XT ).
Clearly,

(λI − T̂ − K̂)l(λI − T̂ − K̂) = IXT

is a Fredholm operator satisfying

i((λI − T̂ − K̂)l(λI − T̂ − K̂)) = 0.

So, one has Eq.(1), we have:

i((λI − T̂ − K̂)l(λI − T̂ )) = i((λI − T −K)l(λI − T )).

It is clear that (λI − T̂ − K̂)l is a Fredholm operator, if and only if, (λI − T̂ − K̂) is

a Fredholm operator, if and only if, (λI − T̂ ) is too. Thus, to reach this Fredholmness
condition, we discuss two cases:

Case I: λI − T̂ ∈ Φl(XT , X) \ Φ(XT , X). In this case, we derive from Eq. (1), that
α(λI − T ) = 0 and β(λI − T ) = +∞. So,

i(λI − T ) = −∞ ≤ 0.

Case II: λI − T̂ ∈ Φ(XT , X). Combining Theorem 5.13 in [23] with the fact that

(λI − T̂ − K̂)l(λI − T̂ ) is a Fredholm operator on XT , we deduce that (λI − T̂ − K̂)l ∈
Φ(X,XT ). According to Eq. (1), we get

i(λI − T ) = i(λI − T̂ ) = i(λI − T̂ − K̂) = i(λI − T −K) ≤ 0.

So, Proposition 2.3 reveals that λ /∈ σl
w(T ).

(ii) Since K(X) ⊂ Sr
n(X), we infer that⋂
K∈Sr

n(X)

σr(T +K) ⊂
⋂

K∈K(X)

σr(T +K) := σr
w(T ).

Next, we may prove the reverse inclusion:

Indeed, let λ /∈
⋂

K∈Sr
n(X)

σr(T +K), then there exists K ∈ Sr
n(X) such that λ /∈ σr(T +K).

That is, there exists K ∈ Sr
n(X) such that λI − T −K ∈ Gr(X). According to Eq. (1), we

conclude that there exists (λI − T̂ − K̂)r ∈ L(X,XT ) such that

(λI − T̂ )(λI − T̂ − K̂)r = IX + K̂(λI − T̂ − K̂)r.
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As K̂ ∈ Sr
n(XT , X), Proposition 2.3 in [18] gives that (λI − T̂ )(λI − T̂ − K̂)r ∈ Φ(X).

Using Theorem 2.3 [10] together with the fact that R((λI − T̂ − K̂)r) ⊂ D(T ), (λI − T̂ −
K̂)r(λI − T̂ ) and K̂(λI − T̂ − K̂)r(λI − T̂ ) are continuous, we infer that

λI − T̂ ∈ Φr(XT , X).

In the following, we will discuss two cases to regard the index of the operator λI − T̂ :

Case I: λI − T̂ ∈ Φr(XT , X) \ Φ(XT , X). Then, by Eq. (1) we deduce in the same
ways as the previous item that:

i(λI − T ) = i(λI − T̂ ) = +∞ ≥ 0.

Case II: λI − T̂ ∈ Φ(XT , X). In such case, the use of Theorem 5.13 in [23] revels that

(λI − T̂ − K̂)r ∈ Φ(X,XT ). Hence, by Eq. (1), we infer that

i(λI − T ) = i(λI − T̂ ) = i(λI − T̂ − K̂) = i(λI − T −K) ≥ 0.

Which completes the proof of theorem. □

Remark 3.3. (i) SS(X) ⊂ Sl
n(X) ∩ Sr

n(X).

(ii) The study of the stability and the invariance problem of left (resp. right) Weyl spectrum
of linear operators under the set of Sl

n(X) (resp. Sr
n(X)) seems not to be fulfilled, since

these sets are not a two-sided closed ideal of the set of bounded operators. This bring us
to introduce the following subset of Sl

n(X) (resp. Sr
n(X)) containing SS(X) to reach the

validity of this problem as:

Ωl
n(X,Y ) := {T ∈ L(X,Y ) : ∆((KT )n) < 1, ∀K ∈ L(Y,X)}

(resp.
Ωr

n(X,Y ) := {T ∈ L(X,Y ) : ∆((TK)n) < 1, ∀K ∈ L(Y,X)}),

for n ∈ N∗.

(iii) If X = Y , we denote the sets Ωl
n(X,X) := Ωl

n(X) and Ωr
n(X,X) := Ωr

n(X).

In order to give a precise description of left and right Fredholm operators, we need first
to establish an useful lemma.

Lemma 3.4. Let X and Y be two Banach spaces. Then, for n ∈ N∗, we have:

(i) T ∈ Ωl
n(X,Y ) and K ∈ L(Y,X) imply KT ∈ Ωl

n(X).

T ∈ Ωl
n(X,Y ) and K ∈ SS(X,Y ) imply T + S ∈ Ωl

n(X,Y ).

(ii) T ∈ Ωr
n(X,Y ) and K ∈ L(Y,X) imply KT ∈ Ωr

n(Y ).

T ∈ Ωr
n(X,Y ) and K ∈ SS(X,Y ) imply T + S ∈ Ωr

n(X,Y ). □

Proof.

(i) The first implication can be easily obtained from the definition of the set Ωr
n(X).

Now, we will prove: Ωl
n(X,Y ) + SS(X,Y ) ⊂ Ωl

n(X,Y ).
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Indeed, let T ∈ Ωl
n(X,Y ) and S ∈ SS(X,Y ).

A short computation reveals, for n ∈ N∗ and K ∈ L(Y,X), that:

∆((K(T + S))n) = ∆((KT +KS)n)

= ∆((KT )n + n(KT )n−1KS + ....+ nKT (KS)n−1 + (KS)n)

= ∆((KT )n +M(S)).

While M(S) is strictly singular operator. Thus, we conclude by the property of the stability
the strict singularity, that:

∆((K(T + S))n) = ∆((KT )n) < 1.

Which asserts the desired result.

(ii) The results of this assertion follows in the same way as item (i). □

The second main result of this subsection shows that the classes W l(X) and Wr(X) are
stable under small perturbations.

Proposition 3.5. Let T ∈ C(X). Hence, we have the following assertions for some n ∈ N∗ :

(i) Assume that K ∈ Ωl
n(X), then:

T ∈ W l(X) if and only if T +K ∈ W l(X).

(ii) Assume that K ∈ Ωr
n(X), then:

T ∈ Wr(X) if and only if T +K ∈ Wr(X).

Proof.

(i) Let T ∈ W l(X). Since T ∈ Φl(X), then we infer from Corollary 1.52 in [3] that there
exist T l ∈ L(X,D(T )) and F ∈ K(X) such that

T lT = I − F on D(T ) with i(T ) ≤ 0.

Thus, we write for K ∈ Ωl
n(X),

T l(T +K) = I + T lK − F.

One has K ∈ Ωl
n(X) and T l ∈ L(X,D(T )), we get from Lemma 3.4, ∆((T lK)n) < 1, for

n ∈ N∗. Therefore, according to Proposition 2.3 in [18], we conclude that I + T lK ∈ Φ(X)
with i(I+T lK) = 0. As F ∈ K(X), then we can deduce that T l(T +K) ∈ Φ(X). Following
Theorem 2.3 in [10], it is proven that:

T +K ∈ Φl(X).

To reach the desired result, we need to provide that i(T +K) ≤ 0. For this purpose, let T̂ ,

T̂ + K̂ and K̂ the bounded operators from XT into X, F̂ ∈ K(XT ) and T̂ l ∈ L(X,XT ).

According to Eq. (1), we infer that T̂ lT̂ = IXT
− F̂ is a Fredholm operator satisfying

i(T̂ lT̂ ) = 0 and i(T̂ l(T̂ + K̂)) = i(T l(T +K)).
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It is clear that T̂ l is a Fredholm operator if and only if T̂ is a Fredholm operator if and only
if T̂ + K̂ is too. So, we will discuss two cases to reach the desired property of one of this
operator.

Case I: We suppose that T̂ + K̂ ∈ Φl(XT , X)\Φ(XT , X). That is α(T̂ + K̂) = 0 and

β(T̂ + K̂) = +∞, then by Eq.(1), we get

i(T +K) = i(T̂ + K̂) = i(T̂ ) = i(T ) ≤ 0.

Case II: Assume that T̂ + K̂ ∈ Φ(XT , X). So, in this case, the result may be checked

from Theorem 5.13 in [23]. That is T̂ l is a Fredholm operator and therefore by Eq. (1),

i(T +K) ≤ 0.

Conversely, let T +K ∈ W l(X). It is trivial to see that T +K ∈ C(X) and −K ∈ Ωl
n(X).

Hence, applying the above reasoning by replacing T by T + K and K by −K, we get
T +K −K = T ∈ W l(X).

(ii) The result flows from the same reasoning of the first item and the proof of Theorem
3.2-(ii). □

As a straightforward consequence of the previous Proposition and Proposition 2.3, we
explore some stability results of the left and right Weyl spectrum of perturbed unbounded
operator involving the measuring concept of non strict singularity:

Theorem 3.6. Let T ∈ C(X). Then, we get:

(i) σl
w(T +K) = σl

w(T ), for all K ∈ Ωl
n(X).

(ii) σr
w(T +K) = σr

w(T ), for all K ∈ Ωr
n(X).

The following result provides a practical criterion for the stability of left and right Weyl
essential spectra by the concept of the measure of non strict singularity perturbation.

Theorem 3.7. Let (T1, T2) ∈ C2(X) such that ρ(T1) ∩ ρ(T2) ̸= ∅.
Thus, we have:

(i) If the operator (λI − T1)
−1 − (λI − T2)

−1 ∈ Ωl
n(X), for some λ ∈ ρ(T1) ∩ ρ(T2), then

σl
w(T1) = σl

w(T2).

(ii) If the operator (λI − T1)
−1 − (λI − T2)

−1 ∈ Ωr
n(X), for some λ ∈ ρ(T1) ∩ ρ(T2), then

σr
w(T1) = σr

w(T2).

Proof. Without loss of generality, we may assume that λ = 0. Hence, 0 ∈ ρ(T1) ∩ ρ(T2).
Therefore, we can write for µ ̸= 0

µI − T1 = −µ(µ−1I − T−1
1 )T1.

Since T1 is one to one and onto, then

α(µI − T1) = α(µ−1I − T−1
1 )
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R(µI − T1) = R(µ−1I − T−1
1 )

and
β(µI − T1) = β(µ−1I − T−1

1 ).

(i) This shows that µI − T1 ∈ Φl(X) if and only if µ−1I − T−1
1 ∈ Φl(X) and i(µI − T1) =

i(µ−1I − T−1
1 ). Therefore,

µ /∈ σl
w(T1) if and only if µI − T1 ∈ Φl(X) and i(µI − T1) ≤ 0

if and only if µ−1I − T−1
1 ∈ Φl(X) and i(µ−1I − T−1

1 ) ≤ 0

if and only if µ−1I − T−1
1 ∈ W l(X).

Combining Lemma 3.5-(i) and the fact that T−1
1 − T−1

2 ∈ Ωl
n(X), we conclude that µ /∈

σl
w(T1) if and only if µ−1I − T−1

2 ∈ W l(X). Consequently, we deduce that:

µ /∈ σl
w(T1) if and only if µ /∈ σl

w(T2).

(ii) The proof of this assertion may be conducted in a similar way to the one in last assertion
(i). □

4 Left and right Weyl spectra of unbounded block 2×2
operator matrix

To reach the validity and the applicability of the theoretical results, we will derived it to
present an amelioration of the spectral analysis of unbounded block 2 × 2 operator matrix
with non maximal domain. Precisely, our aim consists to investigate a new description of
the left and right Weyl spectra of this kind of operator matrices via the concept of measure
of non strict singularity perturbations, which has led to significant advances in the theory
of operators matrices.

4.1 Description of the unbounded operator matrix with non max-
imal domain

Let X,Y and Z be three Banach spaces. We consider linear operators:

ΨX : X −→ Z and ΨY : Y −→ Z.

We define the linear unbounded operator matrix A0, in the space X × Y as follows:

A0 :=

(
A B
C D

)
,

defined on its non maximal domain, D(A0) as:

D(A0) :=

{(
f
g

)
∈ (D(A) ∩ D(C))× (D(B) ∩ D(D)) : ΨXf = ΨY g

}
,

where the operator entries:
* A (resp. D) acts on the Banach space X (resp. Y ) and has domain D(A) (resp. D(D)).
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*B (resp. C) is defined on the domain D(B) (resp. D(C)) and acts from Y intoX (resp. fromX
into Y ).

Next, we start by enacting some essential hypotheses on the components entries of this
kind of operator matrix A0 introduced by S. Charfi et al. in [8]:

(H1) The operator A is densely defined and closable.
It follows from this hypothesis that, D(A), equipped with the graph norm

∥x∥A := ∥x∥+ ∥Ax∥, x ∈ D(A),

can be completed to a Banach space XA, which coincides with D(A), the domain of the
closure of A and which is contained in X.

(H2) D(A) ⊂ D(ΨX) ⊂ XA and ΨX is bounded as a mapping from XA into Z.

(H3) The set D(A) ∩N(ΨX) is dense in X with ρ(A1) ̸= ∅, for A1 := A|D(A)∩N(ΨX).

We recall the following results needed to formulate our theoretical results.

Lemma 4.1. [4, Lemma 2.1-2.2] Under the hypotheses (H1)-(H3), for any λ ∈ ρ(A1), we
have the following assertions:

(i) D(A) := D(A1)⊕N(λI −A).

(ii) The restriction of the subset ΨX |N(λI−A) is injective and denoted by Ψλ .

(iii) R(Ψλ) = ΨX(N(λI −A)) = ΨX(D(A)) does not depend on λ.

As a consequence, we have Ψλ is invertible for λ ∈ ρ(A1) with inverse denoted by Kλ:

Kλ := (Ψλ)
−1 := (ΨX |N(λI−A))

−1 : ΨX(D(A)) −→ N(λI −A).

Concerning the operator C, we will suppose the following assumption:

(H4) D(A) ⊂ D(C) ⊂ XA and C(λI −A1)
−1 is a bounded operator from XA into Y.

Remark 4.2. (i) Combining the closed graph theorem with above assumption, we infer
for λ ∈ ρ(A1), that the operator Cλ := C(λI −A1)

−1 is bounded from X into Y .

(ii) If the assumptions (H1)-(H3) are satisfied, then for λ ∈ ρ(A1) and x ∈ D(A), we have:

(λI −A)x = (λI −A1)(I −KλΨX)x.

When dealing with the case of operator matrix with non maximal domain, we need to
assume further assumptions as well:

(H5) For some (hence for all) λ ∈ ρ(A1), Kλ is a bounded operator from ΨX(D(A)) into
X. Its extension by continuity to ΨX(D(A)) is denoted by Kλ.

(H6) D(B) ∩ D(D) ⊂ D(ΨY ). The sets

Y1 := {y ∈ D(B) ∩ D(D) : ΨY y ∈ ΨX(D(A))}
and

Y2 := {y ∈ D(B) ∩ D(ΨY ) : ΨY y ∈ ΨX(D(A)) = Z1}

are dense in Y.
* The restriction of ΨY to the set Y2, ΨY |Y2 , is a bounded operator from Y2 into Z.
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* The continuous extension of ΨY |Y1 on the all space Y will be denoted by Ψ
◦
Y .

(H7) The set Y1 is a core of the densely defined linear operator D, with ρ(D) ̸= ∅.
(H8) The operator B is densely defined on Y satisfying that for some (hence for all) λ ∈
ρ(A1), the operators:
* (λI −A1)

−1B is bounded on its domain,
* C[−KλΨY + (λI −A1)

−1B] is bounded on Y2.

For λ ∈ ρ(A1), the Schur-complement associated to this kind of operator matrix is defined
on the set Y1 as:

Mλ := D − C[−KλΨY + (λI −A1)
−1B].

Remark 4.3. (i) As a justifications of the systematic analysis of all assumptions on the
entries of this kind of operator matrix A0 of the above form, we refer the readers to some
physical examples like: Delay equation or integro differential equation that are studied in
details in the works [6, 8, 13, 25].

(ii) The assumptions (H6) and (H8) assert that:

Rλ := −C[−KλΨY + (λI −A1)−1B] ∈ L(Y ).

(iii) Under the assumptions Hi, i = {3, ., 8}, the operator Mλ is closable for some (hence
for all) λ ∈ ρ(A1), with closure Mλ satisfying:

Mλ := D +Rλ.

Moreover, assume further that ρ(Mλ) ̸= ∅, for λ ∈ ρ(A1). Thus, the resolvent expression of
the operator Mλ may be expressed by:

(λI −Mλ)
−1 = (λI −D)−1 + (λI −Mλ)

−1[Mλ −D](λI −D)−1

= (λI −D)−1 + (λI −Mλ)
−1Rλ(λI −D)−1, (2)

for all λ ∈ ρ(A1) ∩ ρ(D) ∩ ρ(Mλ).

The above assumptions are essential and fruitful to describe a fine closure of such kind
of operator matrix A0.

Theorem 4.4. [8] Assume that the hypotheses (H1)-(H8) are fulfilled.
Then, the operator A0 is closable for some (hence for all) λ ∈ ρ(A1), with closure A may
be described as:

λI −A =

(
I 0
Cλ I

)(
λI −A1 0

0 λI −Mλ

)(
I Gλ

0 I

)

=

(
I 0
Cλ I

)(
λI −A1 0

0 λI −D

)(
I Gλ

0 I

)
+

(
0 0
0 Rλ

)
. (3)

Our interest in this last part of this subsection consists at showing what are the condi-
tions that we will be required on the components entries of λI−A which make it invertible.

Proposition 4.5. Assume that the assumptions (H1)-(H8) are fulfilled such that ρ(Mλ) ̸=
∅, for λ ∈ ρ(A1). Then, the operator λI −A is invertible in X × Y and its inverse may be
expressed by:
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(λI −A)−1 =

 (λI −A1)
−1 +Gλ(λI −Mλ)

−1Cλ −Gλ(λI −Mλ)
−1

−(λI −Mλ)
−1Cλ (λI −Mλ)

−1


=

 (λI −A1)
−1 + T1Cλ −T1

−T2 (λI −D)−1


+

 Gλ(λI −Mλ)
−1RλT2 −Gλ(λI −Mλ)

−1Rλ(λI −D)−1

−(λI −Mλ)
−1RλT2 (λI −Mλ)

−1Rλ(λI −D)−1

 , (4)

where T1 := Gλ(λI −D)−1 and T2 := (λI −D)−1Cλ, for λ ∈ ρ(A1) ∩ ρ(D) ∩ ρ(Mλ).

Proof. Let λ ∈ ρ(A1). The identity of Eq. (3) and the invertibility of the outer factors:(
I 0
Cλ I

)−1

=

(
I 0

−Cλ I

)
and

(
I Gλ

0 I

)−1

=

(
I −Gλ

0 I

)
,

show that, in view of the fact that λI − A1 and λI − Mλ are invertible in X and Y,
respectively, we infer that the operator λI−A is too in X×Y . Thus, for λ ∈ ρ(A1)∩ρ(Mλ),
we have λ ∈ ρ(A).

Therefore, the resolvent of the operator A may be expressed as well:

(λI −A)−1 =

(
I Gλ

0 I

)−1 (
λI −A1 0

0 λI −Mλ

)−1 (
I 0
Cλ I

)−1

=


(λI −A1)

−1 −Gλ(λI −Mλ)
−1

+Gλ(λI −Mλ)
−1Cλ

−(λI −Mλ)
−1Cλ (λI −Mλ)

−1

 .

Following with the Remark 4.3-(iii), we infer that for λ ∈ ρ(A1) ∩ ρ(D) ∩ ρ(Mλ), the
resolvent of the operator matrix A obey to the following form:

(λI −A)−1 =

 (λI −A1)
−1 +Gλ(λI −D)−1Cλ −Gλ(λI −D)−1

−(λI −D)−1Cλ (λI −D)−1



+

 Gλ(λI −Mλ)
−1Rλ(λI −D)−1Cλ −Gλ(λI −Mλ)

−1Rλ(λI −D)−1

−(λI −Mλ)
−1Rλ(λI −D)−1Cλ (λI −Mλ)

−1Rλ(λI −D)−1


□
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4.2 Left and right Weyl spectra of operator matrix via the measure
of non strict singularity

The purpose of this subsection is to describe the left and right Weyl spectra of unbounded
block 2×2 operator matrix with non maximal domain regardless of these diagonal operators
entries by means of measure of non strict singularity. To do this, we will see that the
following result on the notion of a measure of non strict singularity of 2× 2 block operator
matrix established by N. Moalla in [18], which turns out to be necessary for proving our
desired result.

Lemma 4.6. [18, Lemma 4.1] For all bounded operator matrix

T :=

(
T1 T2

T3 T4

)
on X × Y, we consider

Λ(T ) = max{∆(T1) + ∆(T2),∆(T3) + ∆(T4)}.

Then, Λ defines a measure of non-strict-singularity of the operator matrix T on the space
X × Y.

Theorem 4.7. Let the matrix operator A0 satisfies the assumptions (Hi), 1 ≤ i ≤ 8, for
λ ∈ ρ(A1), the operator Rλ is supposed strictly singular in Y and ρ(Mλ) ̸= ∅.
Assume that for some λ ∈ ρ(A1) ∩ ρ(D) ∩ ρ(Mλ) and for all bounded operators H and K
satisfying:

(i) If ∆(HT1KT1) <
1
9 , ∆(HT1KT2) <

1
9 , ∆(HT2KT2) <

1
9 and ∆(HT2KT1) <

1
9 , then

σl
w(A) ⊂ σl

w(A1) ∪ σl
w(D).

Moreover, if Cσl
ef (A1) and

Cσl
ef (D) are connected (where CΩ will denote the complement

of a subset Ω ⊂ C), then
σl
w(A) = σl

w(A1) ∪ σl
w(D).

(ii) If ∆(T1KT1H) < 1
12 , ∆(T1KT2H) < 1

12 , ∆(T2KT2H) < 1
6 and ∆(T2KT1H) < 1

6 , then

σr
w(A) ⊂ σr

w(A1) ∪ σr
w(D).

Assume further that Cσr
ef (A1) and

Cσr
ef (D) are connected, then

σr
w(A) = σr

w(A1) ∪ σr
w(D).

(iii) If ∆(HT1KT1) <
1
9 , ∆(HT1KT2) <

1
9 , ∆(HT2KT2) <

1
9 , ∆(HT2KT1) <

1
9 ,

∆(T1KT1H) < 1
12 , ∆(T1KT2H) < 1

12 , ∆(T2KT2H) < 1
6 and ∆(T2KT1H) < 1

6 , then

σw(A) ⊂ σw(A1) ∪ σw(D).

Moreover, since Cσef (A1) is connected, then

σw(A) = σw(A1) ∪ σw(D).
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Proof. Let consider the diagonal operator matrix

Q :=

(
A1 0
0 D

)
.

For λ ∈ ρ(A1) ∩ ρ(D) ∩ ρ(Mλ), we have λ ∈ ρ(A) ∩ ρ(Q). So, the representation of
(λI −A)−1 − (λI −Q)−1 may be written from Eq. (4) as well:

(λI −A)−1 − (λI −Q)−1 := Jλ +Oλ,

where the blocks operators matrices Jλ and Oλ are formally given by:

Jλ :=

 T1Cλ −T1

−T2 0

 =

 T3 −T1

−T2 0


and

Oλ :=

 −Gλ(λI −Mλ)
−1Rλ(λI −D)−1Cλ Gλ(λI −Mλ)

−1Rλ(λI −D)−1

(λI −Mλ)
−1Rλ(λI −D)−1Cλ −(λI −Mλ)

−1Rλ(λI −D)−1

 .

(i) Since Rλ ∈ SS(Y ) and the subset SS(Y ) is a closed two sided-ideal of L(Y ), we infer
that Oλ ∈ SS(X × Y ). Keeping the stability under strict singular operator of the subset
Ωl

n(X × Y ) (see Remark 3.2 in [18] for more details), to reach the result for (λI −A)−1 −
(λI −Q)−1 it remains to provide it only for the operator Jλ.

To do this, let us consider the bounded block operator matrix K :=

(
K1 K2

K3 K4

)
.

A short computation, reveals that:

[KJλ]
2

=


(K1T3)

2 + (K2T2)
2 + 2K1T3K2T2

+K1T1K3T3 +K1T1K4T2
K1T3K1T1 +K2T2K1T1

+K1T1K3T3

K3T3K1T3 +K3T3K2T2 +K4T2K1T3

+K4T2K2T2 +K3T1K3T3 +K3T1K4T2

K4T3K1T1 +K4T2K1T1

+K4T1K3T1

 .

Referring to Lemma 4.6 under the fact that Λ
(
[KJλ]

2
)
< 1, we deduce that Jλ ∈ Ωl

2(X ×
Y ). Hence, Remark 3.2 in [18] asserts that Jλ +Oλ ∈ Ωl

2(X × Y ).
Now, applying the result of Theorem 3.7-(i), we infer that

σl
w(A) = σl

w(Q) with i(A) = i(Q).

As Q is a diagonal operator matrix, it is trivial to see that:

σl
w(Q) ⊂ σl

w(A1) ∪ σl
w(D) with i(Q) = i(A1) + i(D).
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Consequently, we get:
σl
w(A) ⊂ σl

w(A1) ∪ σl
w(D).

To accomplish the result of the reverse inclusion, assume that λ /∈ σl
w(A). That is λI−A ∈

Φl(X × Y ) with i(λI − A) ≤ 0. Hence, λI − A1 ∈ Φl(X) and λI − D ∈ Φl(Y ) such that
i(λI −A1) + i(λI −D) ≤ 0.
To provide that i(λI −A1) ≤ 0 and i(λI −D) ≤ 0, we will discuss two cases:

Case I: For λI − A1 ∈ Φ(X) and λI −D ∈ Φ(Y ). Using the fact that ρ(A1) ̸= ∅ and
ρ(D) ̸= ∅, we conclude that there exists µ0 ∈ ρ(A1) and µ1 ∈ ρ(D). Hence, µ0I−A1 ∈ Φ(X)
with i(µ0 − A1) = 0 and µ1I −D ∈ Φ(Y ) with i(µ1I −D) = 0. Moreover, while Cσl

ef (A1)

and Cσl
ef (D) are connected, we deduce from the property of the index that:

i(λI −A1) = i(µ0I −A1) = 0 and i(λI −D) = i(µ1I −D) = 0,

for all λI −A1 ∈ Φ(X) and λI −D ∈ Φ(Y ).

Case II: Let λI − A1 ∈ Φl(X) \ Φ(X) and λI − D ∈ Φl(Y )\Φ(Y ), then, we get
α(λI −A1) < +∞, β(λI −A1) = +∞, α(λI −D) < +∞ and β(λI −D) = +∞. That is,

i(λI −A1) < 0 and i(λI −D) < 0.

Consequently, i(λI − A1) = −∞ ≤ 0 and i(λI − D) = −∞ ≤ 0. This proved that λ /∈
σl
w(A1) ∪ σl

w(D).

(ii) To accomplish the result for the right Weyl spectrum of the operator matrix A, we will
proceed by steps.

Firstly, we will provide that Jλ ∈ Ωr
2(X × Y ).

Indeed, we compute Λ((JλK)2), for the bounded operator K :=

(
K1 K2

K3 K4

)
. That is,

Λ
(
[JλK]

2
)
= Λ




(T3K1)

2 + (T1K3)
2 + 2T3K1T1K3

+T3K2T2K1 + T1K4T2K1

T3K1T3K2 + T3K1T1K4

+T1K3T3K2 + T1K3T1K4

+T3K2T2K2 + T1K4T2K2

T2K1T3K1 + T2K2T1K3

+T2K2T2K1

T2K1T3K2 + T2K1T1K4

+(T2K2)
2




= Λ

((
Q1 Q2

Q3 Q4

))
= max {∆(Q1) + ∆(Q2),∆(Q3) + ∆(Q4)} ,

where

Q1 := (T3K1)
2 + (T1K3)

2 + 2T3K1T1K3 + T3K2T2K1 + T1K4T2K1

Q2 := T3K1T3K2 + T3K1T1K4 + T1K3T3K2 + T1K3T1K4 + T3K2T2K2 + T1K4T2K2

Q3 := T2K1T3K1 + T2K2T1K3 + T2K2T2K1

Q4 := T2K1T3K2 + T2K1T1K4 + (T2K2)
2.

Secondly, we will compute ∆(Q1) + ∆(Q2) and ∆(Q3) + ∆(Q4).
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In fact, a short computation reveals that:

∆(Q1) + ∆(Q2) = ∆
(
(T3K1)

2 + (T1K3)
2 + 2T3K1T1K3 + T3K2T2K1 + T1K4T2K1

)
+ ∆

(
T3K1T3K2 + T3K1T1K4 + T1K3T3K2 + T1K3T1K4

+T3K2T2K2 + T1K4T2K2

)
≤ ∆(T1K̃1T1K̃1) + ∆(T1K3T1K3) + 2∆(T1K̃1T1K3) + ∆(T1K̃2T2K1)

+ ∆(T1K4T2K1) + ∆(T1K̃1T1K̃2) + ∆(T1K̃1T1K4) + ∆(T1K3T1K̃2)

+ ∆(T1K3T1K4) + ∆(T1K̃2T2K2) + ∆(T1K4T2K2).

Similarly, we get:

∆(Q3) + ∆(Q4) = ∆
(
T2K1T3K1 + T2K2T1K3 + T2K2T2K1

)
+ ∆

(
T2K1T3K2 + T2K1T1K4 + (T2K2)

2
)

≤ ∆(T2K1T1K̃1) + ∆(T2K2T1K3) + ∆(T2K2T2K1)

+ ∆(T2K1T1K̃2) + ∆(T2K1T1K4) + ∆(T2K2T2K2),

where K̃∗ := CλK∗, for ∗ = {1, 2}.
Based on the assumptions ∆(T1KT1H) < 1

12 and ∆(T1KT2H) < 1
12 , for all bounded

operators H and K, we infer that ∆(Q1)+∆(Q2) < 1. On the other side, the assumptions
∆(T2KT2H) < 1

6 and ∆(T2KT1H) < 1
6 , assert that ∆(Q3) +∆(Q4) < 1. Consequently, we

deduce that
max (∆(Q1) + ∆(Q2),∆(Q3) + ∆(Q4)) < 1.

So, one checks Jλ ∈ Ωr
2(X × Y ) and Oλ ∈ SS(X × Y ). Hence, following Lemma 2.3-(ii),

we infer that Jλ + Oλ ∈ Ωr
2(X × Y ). That is, (λI − A)−1 − (λI − Q)−1 ∈ Ωr

2(X × Y ).
Finally, the result follows immediately from Theorem 3.7-(ii), that is:

σr
w(A) = σr

w(Q) ⊂ σr
w(A1) ∪ σr

w(D).

The rest of the proof may be checked in the similar ways as the item (i).

(iii) The first inclusion of this item is an immediate consequence of the items (i) and (ii).
That is

σw(A) = σl
w(A) ∪ σr

w(A)

⊂ σl
w(A1) ∪ σl

w(D) ∪ σr
w(A1) ∪ σr

w(D)

⊂ σw(A1) ∪ σw(D).

For the opposite inclusion, let consider λ /∈ σw(A). In other terms, λI − A is a Fredholm
operator in X × Y with i(λI − A) = 0. Which asserts that λI − A1 and λI − D are two
Fredholm operators in X respectively in Y such that

i(λI −A1) + i(λI −D) = 0.
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Furthermore, since ρ(A1) ̸= ∅, then there exist µ ∈ ρ(A1) such that µI − A1 ∈ Φ(X) with
i(µI −A1) = 0. Accordingly with the component connexe of Cσef (A1) and the property of
the index, we deduce that

i(λI −A1) = i(µI −A1) = 0, ∀λ ∈ Cσef (A1).

Consequently, we conclude that i(λI−D) = 0. This in turn yields that λ /∈ σw(A1)∪σw(D).
□

Remark 4.8. (i) The results of Theorem 4.7 remain true if we replace the assumptions for{
∆(HT1KT1) <

1
9 , ∆(HT1KT2) <

1
9 ,

∆(HT2KT2) <
1
9 , ∆(HT2KT1) <

1
9

and

{
∆(T1KT1H) < 1

12 , ∆(T1KT2H) < 1
12 ,

∆(T2KT2H) < 1
6 , ∆(T2KT1H) < 1

6

by:{
γ(HT1KT1) <

1
9 , γ(HT1KT2) <

1
9 ,

γ(HT2KT2) <
1
9 , γ(HT2KT1) <

1
9 ,

and

{
γ(T1KT1H) < 1

12 , γ(T1KT2H) < 1
12 ,

γ(T2KT2H) < 1
6 , γ(T2KT1H) < 1

6

respectively by:{
∥HT1KT1∥ < 1

9 , ∥HT1KT2∥ < 1
9 ,

∥HT2KT2∥ < 1
9 , ∥HT2KT1∥ < 1

9 ,
and

{
∥T1KT1H∥ < 1

12 , ∥T1KT2H∥ < 1
12 ,

∥T2KT2H∥ < 1
6 , ∥T2KT1H∥ < 1

6 ,

while the interaction between the notion of measures of non compactness and non strict
singularity initiated in the paper [18] for T ∈ L(X,Y ), as:

∆(T ) ≤ γ(T ).

(ii) If T1 and T2 are strictly singular operators (resp. compacts operators), then all the
assumptions of Theorem 4.7 are still verified.

(iii) The results of Theorem 4.7 are still valid for unbounded operator matrix with maximal
domain case. That is, if we take ΨX = ΨY ≡ 0, then we obtain that

σ∗
w(A) ⊂ σ∗

w(A) ∪ σ∗
w(D), for σ∗

w(.) = {σl
w(.), σ

r
w(.)}.

So, in this case a generalization of the results given in [18, 19] can be obtained in the case
of left and right Weyl spectra.

Conclusion: During the last years, the measuring concept of non strict singularity has
proved to be useful in different areas, in particular in the study of spectral problems. This
concept of perturbation has attracted the attention of various researchers which can be
regarded as a fine measure of the classical Hausdorff measure of non compactness [22], we
refer the readers to see some references on this concept [1, 2, 18, 19, 21]. On the other
hand, during the past few years, the notion of left and right Atkinson in the context of
linear operators was widely studied. Various techniques and new tools have been introduced
for the study of some spectral properties of this kind of operators (see, for example, the
references [3, 10, 11, 28, 29]). Besides the specificity of this classes in the theory of linear
operators, the interaction between this notion and the measure of non strict singularity
concept demonstrates those efficiency to formulate our goal in this paper. More precisely,
we will use them to provide some advances on the characterization of the left and right Weyl
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spectra of closed densely defined linear operator and to develop some new in the study of
spectral analysis of unbounded operators matrices with non maximal domain problems in
order to enlarge some known results that are widely studied in [18, 19].

Acknowledgement The authors would like to thank the anonymous reviewers for their
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References

[1] F. Abdmouleh, I. Walha, Characterization and stability of essential spectrum by
measure of polynomially non strict singularity operators, Indag. Math. 26 (2015),
455-467.

[2] F. Abdmouleh, I. Walha, Measure of non strict singularity of Schechter essential
spectrum of two bounded operators and application, Bull. Iranian Math. Soc. 43
(2017), 1543-1558.

[3] P. Aiena, Semi Fredholm operators, perturbation theory and localized SVEP, Caracas,
Venezuela (2007).

[4] A. Batkai, P. Binding, A. Dijksma, R. Hrynivo, H. Langer, Spectral problems
for operator matrices, Math. Nachr. 278 (2005), 1408-1429.

[5] R. Bhatia, Matrix analysis, Springer Verlag, New York (1997).

[6] S. Bouzidi, I. Walha, Left-right essential spectra of one-sided operator matrix
and application, Proceedings of the International Conference on Operator Theory,
Hammamet, Tunisia, April 30 - May 3, 2018 (2021).

[7] S. Charfi, A. Elleuch, I. Walha, Spectral theory involving the concept of quasi-
compact perturbations, Mediterr. J. Math. 32 (2019), 1-16.

[8] S. Charfi, I. Walha, On relative essential spectra of block operator matrices and
application, Bull. Korean Math. Soc. 53 (2016), 681-698.

[9] I. C. Gohberg, A. S. Markus, I. A. Feldman, Normally solvable operators and
ideals associated with them, Amer. Math. Soc. Transl. Ser. 2, 61 (1967), 63-84.

[10] M. Gonzalez, M. O. Onieva, On Atkinson operators in locally convex spaces,
Math. Z. 190 (1985), 509-517.

[11] R. Harte, Invertibility and singularity for bounded linear operators, Marcel Dekker,
New York (1988).

[12] A. Jeribi, Spectral theory and applications of linear operators and block operator
matrices, Springer Verlag, New-York (2015).



S. Bouzidi, N. Moalla, I. Walha 411

[13] A. Jeribi, I. Walha, Gustafson, Weidmann, Kato, Wolf, Schechter and Browder
essential spectra of some matrix operator and application to a two-group transport
equation, Math. Nachr. 284 (2011), 67-86.

[14] J. Wu, Theory and applications of partial functional equations, Appl. Math. Sci. 119,
Springer Verlag (1996).

[15] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear
operators, J. Anal. Math. 6 (1958), 261-322.

[16] T. Kato, Perturbation theory of linear operators, Springer Verlag, New York (1996).

[17] V. D. Mil’man, Some properties of strictly singular operators, Func. Anal. and Its
Appl. 3 (1969), 77-78.

[18] N. Moalla, A characterization of Schechter’s essential spectrum by mean of measure
of non strict-singularity and application to matrix operator, Acta Math. Sci. 32
(2012), 2329-2340.

[19] N. Moalla, I. Walha, Stability of Schechter essential spectrum of 2 × 2 block
operator matrix by means of measure of non strict-singularity and application, Indag.
Math. 28 (2017), 1275-1287.
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