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A supercongruence related to Ramanujan-type formula for 1/7
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Abstract

We prove a Ramanujan-type supercongruence involving the Almkvist—Zudilin num-
bers, which confirms a conjecture of Z.-H. Sun and is corresponding to Ramanujan-type
formula for 1/m due to Chan and Verrill:

Here v, are the Almkvist—Zudilin numbers.
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1 Introduction

In 1914, Ramanujan [15] discovered 17 infinite series representations of 1/m, such as

So-1pan 2 - 2,

= (3

where (a)o = 1 and (a)y = a(a+1)---(a+k —1) for K > 1. In 1997, Van Hamme [25]
investigated supercongruences on partial sums of Ramanujan’s infinite series for 1/7 and
proposed 13 interesting supercongruence conjectures, which opened up the study of super-
congruences related to infinite series for 1/m. We refer to [23] for more recent developments
on Van Hamme’s supercongruences.

Supercongruences for partial sums of infinite series for 1 /7 are sometimes called Ramanujan-
type supercongruences. Although all of Van Hamme’s 13 supercongruence conjectures have
been proved by many mathematicians through various methods, Ramanujan-type super-
congruences still attract many experts’ attention (see, for instance, [6, 7, 11, 13, 22, 28]).

The Almkvist—Zudilin numbers (see [1] and [17, A125143]) are defined as
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which appears to be first recorded by Zagier [27] as integral solutions to Apéry-like recur-
rence equations.



484 A supercongruence related to 1/m

Chan and Verrill [4] established several new Ramanujan-type series for 1/7 in terms of
Almkvist—Zudilin numbers, such as

4k +1 3v3
D RiE = M

k=0

and

k=0
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Zudilin [28, (33)] conjectured that (1) possesses the following nice p-adic analogue:

p—1
4k +1 (—3) 3
E —— % =|—|p (mod p°),
81k Tk P ( )

k=0

which was recently confirmed by the author [12]. Here and in what follows, (5) denotes the

Legendre symbol. We remark that congruence properties for the Almkvist—Zudilin numbers
have been widely studied by Amdeberhan and Tauraso [2], Chan, Cooper and Sica [3], and
7.-H. Sun [18, 20, 21].

The motivation of the paper is to establish a p-adic analogue of (2), which was originally
conjectured by Z.-H. Sun [18, Conjecture 6.8].

Theorem 1.1. For any prime p > 5, we have

(4_]{:2—;;,}% = (j) p (mod p?). (3)
k=0

The rest of the paper is organized as follows. Section 2 is devoted to some preliminary
results. We prove Theorem 1.1 in Section 3.

2 Preliminary results

The nth harmonic number is given by

with the convention that Hy = 0. In order to prove Theorem 1.1, we require the following
preliminary results.

Lemma 2.1. For any non-negative integer n, we have

)Tt
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In fact, the identity (4) can be discovered and proved by the symbolic summation package
Sigma developed by Schneider [16]. One can also refer to [9, 10] for the same approach to
finding and proving identities of this type.

Lemma 2.2. For any prime p > 5, we have

(1/3)(p-1)/2(2/3) p-1)/2

and

Proof. Note that

By [8, (49)], we have

Furthermore, we have

(D12 p

o) D5
= _8p (24(1’—1) — ol gyt 4) (mod p®).

(6"0)2) ()
27(p—1)/2

(1/3)(p=1)/2(2/3) (p-1)/2

2
(Wp-1)/2

<(pp__1)1/2> = (—1)(”71)/24”71 (mod p?).

(3(19—1)/2) _p-(p+1)---(p+(p—3)/2)
(p—1)/2 1-2---(p—1)/2

(p_pﬁ (L+pHp-3)/2)

= =2p—2p* (Hip-1)2 +3)

=2p (2" —3p—3) (mod p*),

where we have used the congruence [8, (45)]:

2(1 — 20— 1)
p

Hp-1))2 (mod p).

Combining (7)—(9), we arrive at

(1/3)p-1)/2(2/3) p-1) 2

2
(Dp-1)/2

(_1)(1771)/2221)71 (2 —3p—3)p
33(p—1)/2

— (3 p@ —tp—5) (mod ),
(Z2)psr —6-5) (moa

(mod p?).

(10)
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AN 2
From the congruence ((—3)(”_1)/2 - <?>) =0 (mod p?), we deduce that
— p—1_ 1
(—3)P~1/2 = <3> G (mod p?). (12)
p 2
Applying (12) and the Fermat’s little theorem to the right-hand side of (11) gives

(1/3)(p=1)/2(2/3) (p—1/2
M7,
p—1)/2

= (j) p(3¥ —6p—5) (mod p?),

which proves (5).

Note that (213”__12) /p is always an integer. On the other hand, we have

((5p—3)/2> C@p-1)-2p-(2p+1)---(2p+(p—3)/2)
2 — 2 1-2---(p+1)/2

(2p—1)-2p
(r—1)/2-(p+1)/2

(1+2pH(,3)/2)

= 8p+16p° (Hp-1)/2 +1)

=8p <2p +5— 2p+1) (mod p?).

) G057

It follows that

2
p—1 2p — 2 3
=8(2p+5—2°rtt ( ) ( ) mod p?). 13
Furthermore, by Wolstenholme’s theorem [26], we have
2p — 2 P 2p—1 3
= = —p(2 1 d p°). 14
(=) =5 (U0)) = prs ) od ) (14)

Finally, combining (8),(13) and (14) gives

Al iy G e R e e A

where we have used the Fermat’s little theorem. O

Lemma 2.3. For any prime p > 5, we have

PZ (2]{;4531];)3'3% (Hs — Hp) =2(p—1) (j) (mod p?). (15)
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Proof. Noting that

Br)! _ (1/3)k(2/3)k

5= ; (16)
33k 13 (1)7
we have
p—1 p—1 k—1
(1/3) 2/3 x ( 1 )
o (3H ). 17)
or T 3 Sk — Z )2
 ( 2/<;+13 ! S kD7 Z \1/3+ NPYEEY
Recall the following identity due to Tauraso [24, Theorem 1]:
(1/3)k(2/3)k ki ( 1 ) ’“Zl 1/3 2/3 1 "
Wi Z\1/3+] 2/3+y W ke

Substituting (18) into the right-hand side of (17) and exchanging the summation order
gives

p—1

(3Hs, — Hy)

OM

(2k + 1 33%'3

NN (/3),(2/3), L
X3 W @Dk

k=0 j=0

_1’2‘31/3 2/3)4 ”i 12
_FO (27 4+ 1)( k—j 2k+1

J k=j+1

[\

p—

(1/3);(2/3);
= 2§+1/ (Hp—1 —2Hyp 1 + Hp1—j +2Hsj45 — Hjpq). (19)
=0

It follows from (16) and (19) that

p—1
Hyj, — 3H
ka; 2/<:+1 33’%'3 (3Hok — 3Hy)

p—2
(1 3 (2 3
Epz 2? S 1)( / (H, p—1—2Hop 1 +Hp_1_j+2Hoj40 — Hjpq — 2Hj)
Jj=

2

=3
|

(1/3);(2/3);
(25 + D)D)

2p
J

(1/3); 2/3 ,
(Hzj1 — - 2320 25+ 1)( (mod p°), (20)

I
o

where we have used the facts that H,—1 =0 (mod p?), H,—1—; = H; (mod p) and
(1/3)p-1(2/3)p-1 = 0 (mod p?).
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Furthermore, we have

(1/3); 2/3
Z 2+ 1) H2;+1 Hj)

W ays),e/m);, 2/3 — (1/3);2/3);
- Z; TS A SN cTru T
= Jj=(p+1)/2
(1/3)p-1)/2(2/3) (p-1)/2
(D12

where we have used the fact that (1/3);(2/3); =0 (mod p) for j > |p/3].
By [2, Lemma 2.3], we have

SIS _ (s (2131) (213 +

(1) J J

for 0 < j < |p/3]. It follows from (4) and (22) that

(;)—-fﬁp1w2> (mod p*), 1)

) (mod ), (22)

Lp/3]
(1/3),(2/3);
P2 G+ D)

) (Haj1 — Hy)
j=0 J

WN(FV<WBO<WBLH

. Hoivy — H;
j ] )( 7+ ])

:]7((2UM;J+1)2*_2UM§J+-1(fﬁuvw _}{wﬂﬂ)> (mod p?). (23)

Ifp=1 (mod 3), by H,_1_; = H; (mod p) we have

LHS (23) =9p (mod p?).
If p=2 (mod 3), then
LHS (23) =p(9—6 (Hppsj11 — Hipz))) = -9 (mod p?).
It follows that

Lp/3)
3 (1/3);(2/3);

o (-3 )
By (e = 1) =00 (1) (mod ) 24)

§=0
By [19, Theorem 2.3] and [14, Remark 1.2], we have

(1/3);(2/3); _ (—3

@i+ D2 p) (mod 7). (25)

1

p
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and
(p—1)/2
(A/3)i(2/3); _ (=3 (30 £ 9 — 9941} (mod »?
2 aren = () @ r2-2t) meds)
and so
S BN (B et a1 (med 02
j_(;)/2<2j+1)<1>§(p)<2 ¥ (meds), 2

It follows from (6), (10), (20), (21), (24), (25) and (26) that

-1

3p & (3k)!

2 2 (2k + 1)33k!13 (Hax — Hi)
k=0

(_;’) (9p+ 2P — 3P — 24+ (3P — 6p — 5)(2 — 1))

s(p-1) (=) (mod 7

which is equivalent to (15). 0

3 Proof of Theorem 1.1
We begin with the transformation formula due to Chan and Zudilin [5, Corollary 4.3]:

B

=0

Using (27) and exchanging the summation order, we obtain
ldk+1 7”2“1 Ak 41 s 20\ 2 (40 [k + 3i ()30
—onE T a2\ ) \2i) \ i

S () G Eeen(1) )

k=i

Note that
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which can be easily proved by induction on n. Combining (28) and (29) gives

”i Ak +1 ”’1 20\ 2 (47\ (p + 3i (30)
[N 021+ @i+ (=3)3i\i) \2i)\ 4 )

0 i=

Furthermore, we have

o) ()03

_ (=D'pp+30) - (p+1)(p—1) - (p— 1)
i

p(39)!
i3

(1+p(Hs; — H;)) (mod p3). (31)

Observe that none of the denominators on the right-hand side of (30) contain a multiple
of p except for i = (p — 1)/2. Tt follows from (30) and (31) that

-1

p—1 P .
4k+1 (30)!
=(2p-1) —— (1 Hs; — H;

/-\

- 1B 1)/
FeD2((p— 1)/

*W<<pp—_1>l/z>2@—_ (%, 007) s @

We can rewrite (5) and (25) as

(L +p (Hap-1)2 — Hip1y/2))

3(p—1)/2)! -3
SO s = () P =9 (med ) )
and
p—1 _3 ,
Z 21+ 1 33%'3 = (p) (mod p*). (34)
Note that
P (Hap-1)/2 = Hp—1)2) =1+ 2p  (mod p?). (35)

Substituting (6), (12), (15), (33), (34) and (35) into the right-hand side of (32) and
using the Fermat’s little theorem, we arrive at

"?
L

4k +1 —
(— 2+7)1ﬂk = (;) p (mod p*), as desired.

>
Il

0
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