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Abstract

Consider a graph G and a real-valued function f defined on the degree set of G.
The sum of the outputs f(dv) over all vertices v ∈ V (G) of G is usually known as
the vertex-degree-function index and is denoted by Hf (G), where dv represents the
degree of a vertex v of G. This paper gives sharp bounds on the index Hf (G) in terms
of order and size of G when G is connected and has the maximum degree at most 4.
All the graphs achieving the derived bounds are also determined. Bounds involving
several existing indices – including the general zeroth-order Randić index and coindex,
the general multiplicative first/second Zagreb index, the variable sum lodeg index, the
variable sum exdeg index – are deduced as the special cases of the obtained ones.
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1 Introduction

This study is concerned with only connected and finite graphs. The (chemical-)graph
theoretical concepts used in the this paper without providing their definitions can be found
in the related books like [26, 22, 6, 5].

A topological index is a function defined on the set of all graphs with the condition that
it remains the same under the graph isomorphism. The degree set of a graph G is the set
consisting of all distinct elements of the degree sequence of G. Consider a graph G and a
real-valued function f defined on the degree set of G. The sum of the outputs f(dv) over all
vertices v ∈ V (G) of G is usually known as the vertex-degree-function index and is denoted
by Hf (G), where dv represents the degree of a vertex v of G. Thus,

Hf (G) =
∑

v∈V (G)

f(dv). (1)

Although the terminology and notation of the topological index Hf that is being used by
several researchers was coined by Yao et al. [27], to the best of authors’ knowledge such
indices were studied first by Linial and Rozenman in [14]. These indices have been the
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subject of several recent papers; see for example the recent articles [20, 10, 21], recent
review paper [12], and related publications cited therein.

If vertices u and v are adjacent in G, we write u ∼ v, otherwise we write u ≁ v. Let
TI(G) be a vertex–degree–based topological index of the form:

TI(G) =
∑
u∼v

(f(du) + f(dv)) =
∑

u∈V (G)

duf(du) ;

the right-handed identity is a special case of a more general identity reported in [7]. Then,
the corresponding coindex, TI(G) can be defined [9, 15] as:

TI(G) =
∑
u≁v

(f(du) + f(dv)) =
∑

u∈V (G)

(n− 1− du)f(du) .

The following identity is valid

TI(G) + TI(G) = (n− 1)
∑

u∈V (G)

f(du) = (n− 1)Hf (G) . (2)

In what follows, some existing indices are given that are special cases of Equation (1).

• Equation (1) gives the general zeroth-order Randić index if f(x) = xα (see for example
[17, 2, 13, 16, 3]), where α is a real number.

• The general zeroth–order Randić coindex is obtained from Equation (1) corresponding
to the choice f(x) = (n − 1 − x)xα−1, where n is the order of the graph under
consideration and α is a real number (see e.g. [19, 18]). Particularly, if α = 3, then
the forgotten topological coindex F (G) =

∑
u∈V (G)(n− 1− du)d

2
u is obtained (see for

example [4, 8]); the forgotten topological coindex is same as the Lanzhou index [25].

• One gets the natural logarithm of the general multiplicative first Zagreb index (general
multiplicative second Zagreb index, respectively) [23] by taking f(x) = lnxa (f(x) =
lnxax, respectively), where a ∈ R (that is the set of real numbers).

• The substitution f(x) = x(lnx)a in Equation (1) yields the variable sum lodeg index
[24], where a ∈ R

• If f(x) = xax then Equation (1) gives the variable sum exdeg index (see for example
[24, 1]), where a > 0 with a ̸= 1.

A graph with n vertices and m edges is known as an (n,m)-graph. A chemical graph is
the one with the maximum degree at most four. This paper gives sharp bounds on the index
Hf (G) for chemical (n,m)-graphs in terms of m and n. All the graphs achieving the derived
bounds are also identified. Bounds involving the above-mentioned existing indices (that is,
the general zeroth-order Randić index and coindex, the general multiplicative first/second
Zagreb index, the variable sum lodeg index, the variable sum exdeg index) are deduced as
the special cases of the obtained bounds.
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2 Main results

For a graph G, its number of vertices having the degree r is denoted by nr. If G is a
chemical (n,m)-graph, then

Hf (G) =

4∑
i=1

ni f(i), (3)

4∑
i=1

ni = n, (4)

4∑
i=1

i ni = 2m, (5)

We solve Equations (4) and (5) for the quantities n1, n4, and then substitute their values
in Equation (3):

Hf (G) =
1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m

+

(
f(2)− 2

3
f(1)− 1

3
f(4)

)
n2 +

(
f(3)− 1

3
f(1)− 2

3
f(4)

)
n3 . (6)

Let us take

Γf (G) =

(
f(2)− 2

3
f(1)− 1

3
f(4)

)
n2 +

(
f(3)− 1

3
f(1)− 2

3
f(4)

)
n3 . (7)

Now, Equation (6) yields

Hf (G) =
1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m+ Γf (G) . (8)

Let

ξ1 = f(2)− 2

3
f(1)− 1

3
f(4) and ξ2 = f(3)− 1

3
f(1)− 2

3
f(4) (9)

be the coefficients of n2 and n3, respectively, in (7). From Equation (8), it is evident that
if one wants to establish a bound on Hf for chemical (n,m)-graphs in terms of m and n, it
is enough to determine the least or greatest Γf -value for chemical (n,m)-graphs. Thence,
in the next lemma, we derive a bound on Γf for chemical (n,m)-graphs.

Lemma 2.1. Let G be a chemical (n,m)-graph such that n2 + n3 ≥ 2.

(i). If both ξ1 and ξ2 are negative such that 2ξ2 < ξ1 < ξ2/2, then

Γf (G) < min {ξ1, ξ2} .

(ii). If both ξ1 and ξ2 are positive such that ξ2/2 < ξ1 < 2ξ2, then

Γf (G) > max {ξ1, ξ2} .
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Proof. (i) Take max {ξ1, ξ2} = ξmax. Note that

Γf (G) = ξ1n2 + ξ2n3 ≤ (n2 + n3)ξmax ≤ 2ξmax < min {ξ1, ξ2} .

(ii) Let min {ξ1, ξ2} = ξmin. Then

Γf (G) = ξ1n2 + ξ2n3 ≥ (n2 + n3)ξmin ≥ 2ξmin > max {ξ1, ξ2} .

Recall that the degree set of a graph G is the set of all unequal degrees of vertices of G.

Theorem 2.2. Let G be a chemical (n,m)-graph, where n ≥ 5. Let ξ1 and ξ2 be the
numbers defined in (9).

(i). If both ξ1 and ξ2 are negative such that 2ξ2 < ξ1 < ξ2/2, then

Hf (G) ≤ 1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m

+



f(2)− 2

3
f(1)− 1

3
f(4) if 2m− n ≡ 1 (mod 3)

f(3)− 1

3
f(1)− 2

3
f(4) if 2m− n ≡ 2 (mod 3)

0 if 2m− n ≡ 0 (mod 3)

with equality if and only if
• G contains no vertex of degree 3 and it contains only one vertex of degree 2 whenever
2m− n ≡ 1 (mod 3);
• G contains no vertex of degree 2 and it contains only one vertex of degree 3 whenever
2m− n ≡ 2 (mod 3);
• G contains neither any vertex of degree 2 nor any vertex of degree 3 whenever
2m− n ≡ 0 (mod 3).

(ii) If both ξ1 and ξ2 are positive such that ξ2/2 < ξ1 < 2ξ2, then

Hf (G) ≥ 1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m

+



f(2)− 2

3
f(1)− 1

3
f(4) if 2m− n ≡ 1 (mod 3)

f(3)− 1

3
f(1)− 2

3
f(4) if 2m− n ≡ 2 (mod 3)

0 if 2m− n ≡ 0 (mod 3)
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with equality if and only if
• G contains no vertex of degree 3 and it contains only one vertex of degree 2 whenever
2m− n ≡ 1 (mod 3);
• G contains no vertex of degree 2 and it contains only one vertex of degree 3 whenever
2m− n ≡ 2 (mod 3);
• G contains neither any vertex of degree 2 nor any vertex of degree 3 whenever 2m−n ≡ 0
(mod 3).

Proof. Because the proofs of the both parts are similar to each other, we prove only Part
(i). If the inequality n2 + n3 ≥ 2 holds, then by using Lemma 2.1 and Equation (8), one
has

Hf (G) <
1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m

+min

{
f(2)− 2

3
f(1)− 1

3
f(4), f(3)− 1

3
f(1)− 2

3
f(4)

}

<
1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m

as desired.
In the remaining proof, assume that n2 + n3 ≤ 1. Then, (n2, n3) ∈ {(0, 0), (1, 0), (0, 1)}.
From Equations (4) and (5), it follows that n2 + 2n3 ≡ 2m − n (mod 3) (see for example
[11]), which gives

(n2, n3) =


(1, 0) if 2m− n ≡ 1 (mod 3),

(0, 1) if 2m− n ≡ 2 (mod 3),

(0, 0) if 2m− n ≡ 0 (mod 3).

The required result follows now from Equation (6).

In what follows, we consider some well-known topological indices that satisfy the as-
sumptions of Theorem 2.2 and hence yield different corollaries of Theorem 2.2.

First, we take f(x) = xα. Then Hf is the general zeroth-order Randić index 0Rα. Here,
we have

ξ1 = f(2)− 2

3
f(1)− 1

3
f(4) =


− (2α − 2)(2α − 1)

3
< 0 if either α > 1 or α < 0,

− (2α − 2)(2α − 1)

3
> 0 if 0 < α < 1,

and

ξ2 = f(3)− 1

3
f(1)− 2

3
f(4) =


3α+1 − 22α+1 − 1

3
< 0 if either α > 1 or α < 0,

3α+1 − 22α+1 − 1

3
> 0 if 0 < α < 1.
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Also,

2ξ2 =
2(3α+1 − 22α+1 − 1)

3
< ξ1 = − (2α − 2)(2α − 1)

3
<

ξ2
2

=
3α+1 − 22α+1 − 1

6
(10)

holds if either α > 1 or α < 0. If each inequality sign “<” of (10) is replaced with “>”
then the resulting inequality holds for 0 < α < 1. Thus, we have the following known [11]
result as a direct consequence of Theorem 2.2.

Corollary 2.3. Let G be a chemical (n,m)-graph, where n ≥ 5. If either α > 1 or α < 0,
then

0Rα(G) ≤ 4− 4α

3
n+

2(4α − 1)

3
m+



− (2α − 2)(2α − 1)

3
if 2m− n ≡ 1 (mod 3)

3α+1 − 22α+1 − 1

3
if 2m− n ≡ 2 (mod 3)

0 if 2m− n ≡ 0 (mod 3)

where the equality characterization is the same as specified in Theorem 2.2. If 0 < α < 1
then the above inequality for 0Rα(G) is reversed.

Now, we take f(x) = xax with a > 0 but a ̸= 1. Then Hf is the variable sum exdeg
index SEIa. Here, we have

ξ1 = f(2)−2

3
f(1)−1

3
f(4) =


−2a(a− 1)(2a2 + 2a− 1)

3
< 0 if either 0 < a <

1

3
or a > 1

−2a(a− 1)(2a2 + 2a− 1)

3
> 0 if

1

2
< a < 1,

and

ξ2 = f(3)− 1

3
f(1)− 2

3
f(4) =


−a(a− 1)(8a2 − a− 1)

3
< 0 if either 0 < a <

1

3
or a > 1

−a(a− 1)(8a2 − a− 1)

3
> 0 if

1

2
< a < 1,

Also,

2ξ2 = −2a(a− 1)(8a2 − a− 1)

3
< ξ1 = −2a(a− 1)(2a2 + 2a− 1)

3

<
ξ2
2

= −a(a− 1)(8a2 − a− 1)

6
(11)

holds if either a > 1 or 0 < a < 1
3 . If each inequality sign “<” in (11) is replaced with

“>” then the resulting inequality holds for 1
2 < a < 1. Thus, we have the next result that

follows directly from Theorem 2.2.
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Corollary 2.4. Let G be a chemical (n,m)-graph, where n ≥ 5. If either a > 1 or
0 < a < 1

3 , then

SEIa(G) ≤ 4a(1− a3)n

3
+

2a(4a3 − 1)m

3
+



2a(1− a)(2a2 + 2a− 1)

3
if 2m− n ≡ 1(mod 3)

a(1− a)(8a2 − a− 1)

3
if 2m− n ≡ 2(mod 3)

0 if 2m− n ≡ 0(mod 3)

where the equality characterization is the same as specified in Theorem 2.2. If 1
2 < a < 1

then the above inequality for SEIa(G) is reversed.

Next, we take f(x) = x(lnx)a with a > 0. Then Hf is the variable sum lodeg index
SLIa. Here, for a > ln 3−ln 4

ln(ln 2)−ln(ln 3) (≈ 0.6246), we have

ξ1 = f(2)− 2

3
f(1)− 1

3
f(4) =

2
(
3(ln 2)a − 2(ln 4)a

)
3

< 0,

ξ2 = f(3)− 1

3
f(1)− 2

3
f(4) =

9(ln 3)a − 8(ln 4)a

3
< 0

and

2ξ2 =
2
(
9(ln 3)a − 8(ln 4)a

)
3

< ξ1 =
2
(
3(ln 2)a − 2(ln 4)a

)
3

<
ξ2
2

=
9(ln 3)a − 8(ln 4)a

6
.

Hence, the following corollary is another direct consequence of Theorem 2.2.

Corollary 2.5. Let G be a chemical (n,m)-graph, where n ≥ 5. If

a >
ln 3− ln 4

ln(ln 2)− ln(ln 3)
(≈ 0.6246),

then

SLIa(G) ≤ 8(ln 4)a

3
m− 4(ln 4)a

3
n+



2
(
3(ln 2)a − 2(ln 4)a

)
3

if 2m− n ≡ 1 (mod 3)

9(ln 3)a − 8(ln 4)a

3
if 2m− n ≡ 2 (mod 3)

0 if 2m− n ≡ 0 (mod 3)

where the equality characterization is the same as specified in Theorem 2.2.

Finally, if we take f(x) = (n − 1 − x)x2, or f(x) = lnxax, or f(x) = lnxa, then
Hf is the forgotten topological coindex F (G) (see [4, 8]), or the natural logarithm of the
general multiplicative first Zagreb index lnΠ1,a, or the natural logarithm of the general
multiplicative second Zagreb index lnΠ2,a, respectively.

• If we take f(x) = (n − 1 − x)x2 with n ≥ 11, or f(x) = lnxax with a > 0, or
f(x) = lnxa with a < 0, then f satisfies the conditions of Theorem 2.2(i).
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• If we take f(x) = lnxa with a > 0, or f(x) = lnxax with a < 0, then f satisfies the
conditions of Theorem 2.2(ii).

Hence, the next result follows immediately from Theorem 2.2.

Corollary 2.6. Let G be a chemical (n,m)-graph, where n ≥ 5. If a < 0 then

Π1,a(G) ≤



2
a(4m−2n+1)

3 if 2m− n ≡ 1 (mod 3)

2
2a(2m−n−2)

3 3a if 2m− n ≡ 2 (mod 3)

2
2a(2m−n)

3 if 2m− n ≡ 0 (mod 3),

Π2,a(G) ≥



2
2a(8m−4n−1)

3 if 2m− n ≡ 1 (mod 3)

2
8a(2m−n−2)

3 33a if 2m− n ≡ 2 (mod 3)

2
8a(2m−n)

3 if 2m− n ≡ 0 (mod 3),

and if n ≥ 11 then

F (G) ≤



2
(
m(5n− 26)− n(2n− 11) + 8

)
if 2m− n ≡ 1 (mod 3)

2
(
m(5n− 26)− n(2n− 11) + 9

)
if 2m− n ≡ 2 (mod 3)

2
(
m(5n− 26)− 2n(n− 6)

)
if 2m− n ≡ 0 (mod 3),

where the equality characterization in any of the above inequalities involving Π1,a(G), Π2,a(G),
F (G), is the same as specified in Theorem 2.2. If a > 0 then the above inequalities involving
Π1,a(G) and Π2,a(G) are reversed.

From Theorem 2.2 and the identity (2), the next result follows.

Theorem 2.7. Let G be a chemical (n,m)-graph, where n ≥ 5. Let ξ1 and ξ2 be the
numbers defined in (9).

(i) If both ξ1 and ξ2 are negative such that 2ξ2 < ξ1 < ξ2/2, then

TI(G) + TI(G) ≤ (n− 1)

(
1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m

)

+



(n− 1)
(
f(2)− 2

3
f(1)− 1

3
f(4)

)
if 2m− n ≡ 1 (mod 3)

(n− 1)
(
f(3)− 1

3
f(1)− 2

3
f(4)

)
if 2m− n ≡ 2 (mod 3)

0 if 2m− n ≡ 0 (mod 3),
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with equality if and only if
• G contains no vertex of degree 3 and it contains only one vertex of degree 2 whenever
2m− n ≡ 1 (mod 3);
• G contains no vertex of degree 2 and it contains only one vertex of degree 3 whenever
2m− n ≡ 2 (mod 3);
• G contains neither any vertex of degree 2 nor any vertex of degree 3 whenever
2m− n ≡ 0 (mod 3).

(ii) If both ξ1 and ξ2 are positive such that ξ2/2 < ξ1 < 2ξ2, then

TI(G) + TI(G) ≥ (n− 1)

(
1

3

(
4f(1)− f(4)

)
n+

2

3

(
f(4)− f(1)

)
m

)

+



(n− 1)
(
f(2)− 2

3
f(1)− 1

3
f(4)

)
if 2m− n ≡ 1 (mod 3)

(n− 1)
(
f(3)− 1

3
f(1)− 2

3
f(4)

)
if 2m− n ≡ 2 (mod 3)

0 if 2m− n ≡ 0 (mod 3)

with equality if and only if
• G contains no vertex of degree 3 and it contains only one vertex of degree 2 whenever
2m− n ≡ 1 (mod 3);
• G contains no vertex of degree 2 and it contains only one vertex of degree 3 whenever
2m− n ≡ 2 (mod 3);
• G contains neither any vertex of degree 2 nor any vertex of degree 3 whenever
2m− n ≡ 0 (mod 3).
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