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Abstract

In this paper, we use a vector-valued conditioning function to define a conditional
Fourier–Feynman transform (CFFT) on the Wiener space. We establish the exis-
tence of the CFFT for bounded functionals which form a Banach algebra. We then
investigate Fubini theorems for the CFFT. The Fubini theorems for the transforms
investigated in this paper are to express the iterated CFFT as a single CFFT. The
conditioning functions in the Fubini theorems are uncorrelated finite-dimensional ran-
dom vectors on the Wiener space.
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1 Introduction

The Feynman–Kac functionals are given by Ft(x) = exp{
∫ t

0
θ(s, x(s))ds} where θ is a

complex-valued potential on [0, T ]×R. The conditional Feynman integrals of the Feynman–
Kac functionals are important in a branch of the study of the Schrödinger equation. By a
Feynman–Kac formula, many physical problems concerning the Schrödinger equation can be
represented in terms of the conditional Feynman integral Eanfq (Ft|Xt) of the Feynman–Kac
functional Ft, where Xt(x) = x(t). Moreover, the conditional Feynman integral provides
solutions of the integral equations which are formally equivalent to the Schrödinger equation
[10, 12, 18, 22, 23, 28]. We are obliged to point out that the conditional Feynman integral
was defined in terms of the conditional Wiener integral. Based on this background, eval-
uation formulas for conditional Wiener integrals have been established through the papers
[22, 23, 24, 28]. For a detailed survey of the conditional Wiener and Feynman integrals, see
[8].

On the other hand, the Fourier–Feynman transform theory is very important in the study
of infinite dimensional analysis. The theory of the analytic Fourier–Feynman transform
suggested by Brue [1] now is playing a central role in the analytic Feynman integration
theory and its applications. The classical Fourier–Feynman transform and several analogies
have been improved in various research articles. For instance, see [2, 5, 6, 7, 13, 14, 15, 16].
This transform and its properties are similar in many respects to the ordinary Fourier
transform of functions on Euclidean space. For an elementary introduction of the Fourier–
Feynman transform, see [26].
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Studies of conditional Wiener and Feynman integrals given finite dimensional condition-
ing functions were performed with additional topics in [9, 11, 12, 22, 28]. The concept of a
CFFT was suggested by Park and Skoug in [25]. The structure of the CFFT is based on the
conditional Wiener and Feynman integrals. In [25], using a one-dimensional conditioning
function X on the classical Wiener space C0[0, T ], the space of continuous functions on the
time interval [0, T ] such that x(0) = 0, Park and Skoug defined the CFFT, Tq(F |X), of
functionals F on C0[0, T ]. Since then, the theory of CFFTs for functionals on C0[0, T ] has
been developed by many authors. For example, see [6, 8, 9].

In view of these background illustrated above, it is worth-while to improve the study
of conditional analytic Feynman integrals and CFFTs for functionals on the Wiener space
C0[0, T ]. As a development of these integrals and transforms, we in this paper investigate
some aspect of the conditional analytic Feynman integral and the CFFT for functionals
on C0[0, T ]. The outline of this paper is as follows. In Section 3, we define the CFFT
given a vector-valued conditioning function on C0[0, T ]. We then, in Section 4, provide
explicit formulas for CFFTs of functionals in the Cameron and Storvick’s Banach algebra
S(L2[0, T ]) [3]. Finally, in Section 5, we investigate some Fubini theorems involving the
CFFTs (Theorems 5.1 and 5.2) and the conditional Feynman integral (Corollary 5.3 below).
The conditioning functions in the Fubini theorems for the iterated CFFT are uncorrelated
random vectors on the Wiener space C0[0, T ].

2 Preliminaries

We now introduce basic concepts to define a CFFT for functionals on the complete Wiener
measure space (C0[0, T ],W(C0[0, T ]),mw), where W(C0[0, T ]) denotes the σ-field of all
Wiener measurable subsets. We denote the Wiener integral of a Wiener integrable functional
F by

E[F ] ≡ Ex[F (x)] =

∫
C0[0,T ]

F (x)dmw(x),

and for u ∈ L2[0, T ] and x ∈ C0[0, T ], we let 〈u, x〉 =
∫ T

0
u(t)dx(t) denote the Paley–

Wiener–Zygmund (PWZ) stochastic integral [19, 20, 21]. It is well-known that for each
v ∈ L2[0, T ], the PWZ integral 〈v, x〉 exists for mw-a.e. x ∈ C0[0, T ] and is a Gaussian
random variable with mean 0 and variance ‖v‖22. If {α1, . . . , αn} is an orthogonal set of
functions in L2[0, T ], then the random variables, {〈αj , x〉}nj=1, are independent.

LetX be an Rn-valued measurable function and let Y be a C-valued integrable functional
on the complete Wiener space (C0[0, T ],W(C0[0, T ]),mw). Let F(X) denote the σ-field
generated by X. Then by the definition, the conditional expectation of Y given F(X),
written E(Y |X), is any C-valued F(X)−measurable functional on C0[0, T ] such that∫

A

Y (x)dmw(x) =

∫
A

E(Y |X)(x)dmw(x) for A ∈ F(X).

It is well known that there exists a Borel measurable and PX−integrable function ψ on
(Rn,B(Rn), PX) such that E(Y |X) = ψ◦X, where B(Rn) denotes the Borel σ-field of Borel
subsets in Rn and PX is the probability distribution of X defined by PX(U) = mw(X

−1(U))

for U ∈ B(Rn). The function ψ(ξ⃗), ξ⃗ ∈ Rn, is unique up to Borel null sets in Rn. Following
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Tucker [27] and Yeh [28], the function ψ(ξ⃗), written E(Y |X = ξ⃗), is called the conditional
Wiener integral of Y given X.

Let N = {en}∞n=1 be a countable orthonormal basis of L2[0, T ]. For each n ∈ N, let
γn(x) = 〈en, x〉 and let βn(t) =

∫ t

0
en(s)ds for t ∈ [0, T ]. Then the PWZ stochastic integrals

γn(x), n ∈ N, form a set of independent standard Gaussian random variables on C0[0, T ]
with Ex[x(t)γn(x)] = βn(t).

Let G = {eG1 , . . . , eGn} be a finite subset of N . For each eGj ∈ G, j ∈ {1, . . . , n}, we
denote 〈eGj , x〉 and

∫ t

0
eGj (s)ds by γGj (x) and βG

j (t), respectively. Given a finite subset G =

{eG1 , . . . , eGn} ofN , letHG be the subspace of L2[0, T ] spanned by G, and letXG : C0[0, T ] −→
Rn be defined by

XG(x) = (〈eGj , x〉, . . . , 〈e
G
n, x〉) = (γG1 (x), . . . , γ

G
n (x)). (2.1)

Define a projection map PG from L2[0, T ] into HG by

PGv =

n∑
j=1

(v, eGj )2e
G
j ∈ HG

where (·, ·)2 denotes the inner product on the Hilbert space L2[0, T ]. Then we see that the
function v − PGv is in the orthogonal space H⊥

G .

For each x ∈ C0[0, T ] and ξ⃗ = (ξ1, . . . , ξn) ∈ Rn, let

xG(t) = 〈PGI[0,t], x〉 =
n∑

j=1

γGj (x)β
G
j (t)

and

ξ⃗G(t) =

n∑
j=1

ξj(e
G
j , I[0,t])2 =

n∑
j=1

ξjβ
G
j (t),

where I[0,t] denotes the indicator function of the interval [0, t].

In [24], Park and Skoug proved the facts that the process {x(t)− xG(t), 0 ≤ t ≤ T} and
the Gaussian random variable γGj (x) are stochastically independent for each j ∈ {1, . . . , n},
and that the processes {x(t) − xG(t), 0 ≤ t ≤ T} and {xG(t), 0 ≤ t ≤ T} are also stochas-
tically independent. Using these basic results, Park and Skoug established the following
evaluation formula to express conditional Wiener integrals in terms of ordinary Wiener
integrals.

Theorem 2.1 ([24]). Let F ∈ L1(C0[0, T ]). Then it follows that

E(F |XG = ξ⃗) = Ex

[
F
(
x− xG + ξ⃗G

)]
= Ex

[
F

(
x−

n∑
j=1

γGj (x)β
G
j +

n∑
j=1

ξjβ
G
j

)]
(2.2)

for a.e. ξ⃗ ∈ Rn.
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3 Conditional Fourier–Feynman transform

In order to define the CFFT, we need the concept of the scale-invariant measurability on
the Wiener space. A subset B of C0[0, T ] is called a scale-invariant measurable (SIM) set
if ρB ∈ W(C0[0, T ]) for all ρ > 0, and an SIM set N is called a scale-invariant null set if
mw(ρN) = 0 for all ρ > 0. A property which holds except on a scale-invariant null set is
said to hold scale-invariant almost everywhere (SI-a.e.). A functional F on C0[0, T ] is said
to be SIM provided F is defined on an SIM set and F (ρ · ) is W(C0[0, T ])-measurable for
every ρ > 0. For more detailed studies of the scale-invariant measurability, see [17].

The definition of the CFFT is based on the conditional analytic Wiener and the condi-
tional Feynman integrals [11, 12, 25]. In this paper, we shall use exclusively the conditioning
function XG given by (2.1) to define a CFFT on C0[0, T ].

Let C+ = {λ ∈ C : Re(λ) > 0} and let C̃+ = {λ ∈ C \ {0} : Re(λ) ≥ 0}. Let
XG : C0[0, T ] → Rn be given by (2.1) and let F be a C-valued SIM functional such that
the Wiener integral Ex[F (λ

−1/2x)] exists as a finite number for all λ > 0. For λ > 0

and ξ⃗ in Rn, let JF (λ; ξ⃗) = E(F (λ−1/2 · )|XG(λ
−1/2 · ) = ξ⃗) denote the conditional Wiener

integral of F (λ−1/2 · ) given X(λ−1/2 · ). If for a.e. ξ⃗ ∈ Rn, there exists a function J∗
F (λ; ξ⃗),

analytic in C+ such that J∗
F (λ; ξ⃗) = JF (λ; ξ⃗) for all λ > 0, then J∗

F (λ; · ) is defined to be
the conditional analytic Wiener integral of F over C0[0, T ] given XG with parameter λ. For
λ ∈ C+, we write

Eanwλ(F |XG = ξ⃗) = J∗
F (λ; ξ⃗).

If for fixed real q ∈ R \ {0}, the limit

lim
λ→−iq
λ∈C+

Eanwλ(F |XG = ξ⃗)

exists for a.e. ξ⃗ ∈ Rn, then we will denote the value of this limit by

Eanfq (F |XG = ξ⃗),

and we call it the conditional analytic Feynman integral of F over C0[0, T ] given XG with
parameter q.

Let F be a C-valued SIM functional on C0[0, T ] such that the Wiener integral E[F (y+
λ−1/2 · )] ≡ Ex[F (y + λ−1/2x)] exists as a finite number for all λ > 0. Then one can easily
see from (2.2) that for all λ > 0,

E(F (λ−1/2 · )|XG(λ
−1/2 · ) = ξ⃗) ≡ E(F (λ−1/2 · )|γGj (λ

−1/2 · ) = ξj , j = 1, . . . , n)

= Ex

[
F

(
λ−1/2x− λ−1/2

n∑
j=1

γGj (x)β
G
j +

n∑
j=1

ξjβ
G
j

)]
.

(3.1)
Thus we have that

Eanwλ(F |XG = ξ⃗) = Eanwλ
x

[
F

(
x−

n∑
j=1

γGj (x)β
G
j +

n∑
j=1

ξjβ
G
j

)]
,
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and

Eanfq (F |Xn = ξ⃗) = Eanfq
x

[
F

(
x−

n∑
j=1

γGj (x)β
G
j +

n∑
j=1

ξjβ
G
j

)]
,

where Eanwλ
x [F (x)] and E

anfq
x [F (x)] denote the analytic Wiener and the analytic Feynman

integrals of functionals F on C0[0, T ], respectively, see [3, 12, 13, 14, 15, 16].
We are now ready to state the definitions of the CFFT of functionals on C0[0, T ].

Definition 3.1. Let F : C0[0, T ] → C be an SIM functional on C0[0, T ] such that the
Wiener integral E[F (y + λ−1/2 · )] exists as a finite number for all λ > 0. Let XG :

C0[0, T ] → Rn be given by (2.1). For λ ∈ C+ and y ∈ C0[0, T ], let Tλ(F |XG)(y, ξ⃗) de-
note the conditional analytic Wiener integral of F (y + ·) given XG, that is to say,

Tλ(F |XG)(y, ξ⃗) = Eanwλ(F (y + · )|XG = ξ⃗)

= Eanwλ
x

[
F

(
y + x−

n∑
j=1

γGj (x)β
G
j +

n∑
j=1

ξjβ
G
j

)]
.

We define the L1 analytic CFFT T
(1)
q (F |XG)(y, ξ⃗) of F given XG by the formula

T (1)
q (F |XG)(y, ξ⃗) = lim

λ→−iq
λ∈C+

Tλ(F |XG)(y, ξ⃗).

4 Conditional Fourier–Feynman transform for function-
als in a Banach algebra

In this section, we will establish the existences of the CFFT for bounded functionals in the
Cameron and Storvick’s Banach algebra S(L2[0, T ]).

The Banach algebra S(L2[0, T ]) consists of functionals Fσ on C0[0, T ] having the form

Fσ(x) =

∫
L2[0,T ]

exp{i〈u, x〉}dσ(u) (4.1)

for SI-a.e. x ∈ C0[0, T ], where the associated measure σ is an element of the Banach algebra
M(L2[0, T ]), the space of C-valued countably additive (and hence finite) Borel measures
on L2[0, T ]. More precisely, since we shall identify functionals which coincide SI-a.e. on
C0[0, T ], the space S(L2[0, T ]) can be regarded as the space of all s-equivalence classes of
functionals of the form (4.1). It was also shown in [3] that the correspondence f 7→ F is
injective, carries convolution into pointwise multiplication and that S(L2[0, T ]) is a Banach
algebra with the norm

‖Fσ‖ ≡ ‖σ‖ =

∫
L2[0,T ]

d|σ|(u). (4.2)

In particular, it was shown in [4] that the Banach algebra S(L2[0, T ]) contains many func-
tionals of interest in Feynman integration theory. For more details, see [3, 4].

Given a complex measure σ ∈ M(L2[0, T ]), let

S(σ) = {σ̃ ∈ M(L2[0, T ]) : ‖σ‖ = ‖σ̃‖}. (4.3)
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Using the fact that the PWZ stochastic integral 〈u, x〉 of a function u in L2[0, T ] is a
Gaussian random variable, as a functional of x ∈ C0[0, T ], with mean zero and variance
‖u‖22, and the change of variable theorem, we have the following results.

Let Fσ ∈ S(L2[0, T ]) given by (4.1). Then it was shown that for all q ∈ R \ {0},

Eanfq [Fσ] =

∫
L2[0,T ]

exp

{
− i

2q
‖u‖22

}
dσ(u),

and

T (1)
q (Fσ)(y) =

∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2q
‖u‖22

}
dσ(u)

for SI-a.e. y ∈ C0[0, T ], where T
(1)
q (F ) denotes the analytic Fourier–Feynman transform for

functionals F on C0[0, T ], see [14]. We also refer to the article [5, 6, 7] for more interesting
results of the analytic Fourier–Feynman transforms.

Lemma 4.1. For each u ∈ L2[0, T ] and any ρ > 0, it follows that

Ex[exp{iρ〈u, x〉}] = exp
{
− ρ2‖u‖22

}
. (4.4)

Lemma 4.2. Let G = {eG1 , . . . , eGn} be a subset of the complete orthonormal set N in
L2[0, T ]. Then for each u ∈ L2[0, T ] and any ρ > 0, it follows that

Ex

[
exp

{
iρ

〈
u, x−

n∑
j=1

γGj (x)β
G
j

〉}]
= exp

{
− ρ2

2

[
‖u‖2 −

n∑
j=1

(u, eGj )
2

]}
. (4.5)

In particular, it follows that for any q ∈ R \ {0} and any ρ > 0,

Eanfq
x

[
exp

{
iρ

〈
u, x−

n∑
j=1

γGj (x)β
G
j

〉}]
= exp

{
− iρ2

2q

[
‖u‖2 −

n∑
j=1

(u, eGj )
2

]}
. (4.6)

Proof. Using the bilinearity of the PWZ stochastic integral 〈·, ·〉 and equation (4.4) with u
replaced with u−

∑n
j=1(u, e

G
j )2e

G
j , equation (4.5) follows immediately. Next, in view of the

definition of the analytic Feynman integral [3, 13, 14, 15], one can verify equation (4.6).

In our first theorem of this section, we establish the existences of the CFFT T
(1)
q (F |XG)

of functionals in the Banach algebra S(L2[0, T ]).

Theorem 4.3. Let Fσ ∈ S(L2[0, T ]) be given by equation (4.1), and given an orthonormal

subset G = {eG1 , . . . , eGn} of N , let XG be given by equation (2.1). Then for a.e. ξ⃗ ∈ Rn, it
follows that

T (1)
q (F |XG)(y, ξ⃗)

=

∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2q

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

n∑
j=1

ξj(u, e
G
j )2

}
dσ(u)

(4.7)

for all q ∈ R \ {0} and SI-a.e. y ∈ C0[0, T ].
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Proof. Using (4.1), (3.1) with F replaced with Fσ(y + ·), the Fubini theorem, (4.5) with w

and ρ replaced with u and λ−1/2, it follows that for (λ, ξ⃗) ∈ (0,+∞)× Rn,

JFσ(y+·)(λ; ξ⃗) ≡ E
(
Fσ(y + λ−1/2 · )

∣∣XG(λ
−1/2 · ) = ξ⃗

)
= Ex

[
F

(
y + λ−1/2x− λ−1/2

n∑
j=1

γGj (x)β
G
j +

n∑
j=1

ξjβ
G
j

)]

=

∫
L2[0,T ]

exp

{
i〈u, y〉+ i

〈
u,

n∑
j=1

ξjβ
G
j

〉}
Ex

[
exp

{
iλ−1/2

〈
u, x−

n∑
j=1

γGj (x)β
G
j

〉}]
dσ(u)

=

∫
L2[0,T ]

exp

{
i〈u, y〉+ i

〈
u,

n∑
j=1

ξjβ
G
j

〉}
Ex

[
exp

{
iλ−1/2

〈
u−

n∑
j=1

(u, ej)2ej , x

〉}]
dσ(u)

=

∫
L2[0,T ]

exp

{
i〈u, y〉 − 1

2λ

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

n∑
j=1

ξj(u, e
G
j )2

}
dσ(u).

Let

J∗
Fσ(y+·)(λ; ξ⃗) =

∫
L2[0,T ]

exp

{
i〈u, y〉 − 1

2λ

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

n∑
j=1

ξj(u, e
G
j )2

}
dσ(u)

(4.8)
for λ ∈ C+. Since Re(λ) > 0 for all λ ∈ C+, it follows that∣∣J∗

Fσ(y+·)(λ; ξ⃗)
∣∣

≤
∫
L2[0,T ]

∣∣∣∣ exp{i〈u, y〉 − 1

2λ

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

n∑
j=1

ξj(u, ej)2

}∣∣∣∣d|σ|(u)
≤

∫
L2[0,T ]

d|σ|(u)

= ‖σ‖ < +∞.

(4.9)

Hence, applying the dominated convergence theorem, we see that J∗
Fσ(y+·)(λ; ξ⃗) is a contin-

uous function of λ ∈ C̃+. Since

K(λ) ≡ exp

{
i〈u, y〉 − 1

2λ

[
‖u‖22 −

n∑
j=1

(u, ej)
2
2

]
+ i

n∑
j=1

ξj(u, e
G
j )2

}
is analytic on C+, using the Fubini theorem, it follows that∫

Γ

J∗
Fσ(y+·)(λ; ξ⃗)dλ =

∫
L2[0,T ]

∫
Γ

K(λ)dλdσ(u) = 0

for all rectifiable closed curves Γ lying in C+. Thus, by the Morera theorem, we see that

J∗
Fσ(y+·)(λ; ξ⃗) is analytic in λ ∈ C+. Therefore, the conditional analytic Wiener integral

Tλ(Fσ|XG)(y, ξ⃗) = Eanwλ(Fσ(y + ·)|XG = ξ⃗) = J∗
Fσ(y+·)(λ; ξ⃗)
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exists and is given by the right-hand side of (4.8). Finally, by the dominated convergence

theorem (the use of which is justified by (4.9)), the L1 analytic CFFT T
(1)
q (Fσ|XG = ξ⃗) of

Fσ exists and is given by the formula (4.7).

From the definition of the conditional analytic Feynman integral and the L1 analytic
CFFT, it follows that

T (1)
q (Fσ|XG)(0, ξ⃗) = Eanfq (Fσ|XG = ξ⃗). (4.10)

We thus have the following corollary.

Corollary 4.4. Let Fσ and XG be as in Theorem 4.3. Then the conditional analytic
Feynman integral Eanfq (Fσ|XG = ξ⃗) of Fσ exists for all q ∈ R \ {0} and a.e. ξ⃗ ∈ Rn, and
is given by the formula

Eanfq (Fσ|XG = ξ⃗) =

∫
L2[0,T ]

exp

{
− i

2q

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

n∑
j=1

ξj(u, e
G
j )2

}
dσ(u).

Remark 4.5. Given a functional Fσ in S(L2[0, T ]) with the corresponding measure σ ∈
M(L2[0, T ]), and given a nonzero real number q and a vector ξ⃗ ∈ Rn, define a set function
σq,ξ⃗ : B(L2[0, T ]) → C by the formula

σq,ξ⃗(U) =

∫
U

exp

{
− i

2q

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

n∑
j=1

ξj(u, e
G
j )2

}
dσ(u) (4.11)

for each U in B(L2[0, T ]), the Borel σ-field on L2[0, T ]. Then σq,ξ⃗ is obviously a complex

measure in M(L2[0, T ]). One can easily see that the complex measure σq,ξ⃗ defined by (4.11)

is an element of the sphere S(σ) in M(L2[0, T ]) for any q ∈ R \ {0} and ξ⃗ ∈ Rn. Then
equation (4.7) can be rewritten by

T (1)
q (Fσ|XG)(y, ξ⃗) =

∫
L2[0,T ]

exp{i〈u, y〉}dσq,ξ⃗(u)

for SI-a.e. y ∈ C0[0, T ], and so the L1 analytic CFFT T
(1)
q (Fσ|XG)( · , ξ⃗) of Fσ with param-

eter q is an element of S(L2[0, T ]) for each ξ⃗ ∈ Rn.

In view of Theorem 4.3 and Remark 4.5, we easily obtain the following theorem.

Theorem 4.6. Let Fσ and XG be as in Theorem 4.3. Then,

(i) for any q in R \ {0}, it follows that

T
(1)
−q (T

(1)
q (Fσ|XG)( · , ξ⃗)|XG)(y,−ξ⃗) = F (y)

for SI-a.e. y ∈ C0[0, T ] and a.e. ξ⃗ ∈ Rn; and
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(ii) for any finite sequence {q1, . . . , qm} in R \ {0} which satisfies the condition

1

q1
+ · · ·+ 1

qk
6= 0 for each k ∈ {1, . . . ,m}, (4.12)

it follows that

T (1)
qm

(
T (1)
qm−1

(
· · ·T (1)

q1 (Fσ|XG)( · , ξ⃗(1)) · · ·
∣∣∣XG

)
( · , ξ⃗(m−1))

∣∣∣XG

)
(y, ξ⃗(m))

= T (1)
αm

(Fσ|XG)

(
y,

m∑
k=1

ξ⃗(k)
) (4.13)

for SI-a.e. y ∈ C0[0, T ] and a.e. (ξ⃗(1), . . . , ξ⃗(m)) in (Rn)m, the product of m copies of
Rn, where

αm =

(
1

q1
+ · · ·+ 1

qm

)−1

. (4.14)

Also, both of the expressions in (4.13) are given by the expression∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2αm

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

m∑
k=1

n∑
j=1

ξ
(k)
j (u, eGj )2

}
dσ(u)

for SI-a.e. y ∈ C0[0, T ].

Let F be an SIM functional on C0[0, T ]. Define a transform An : (C0[0, T ])
m → C0[0, T ]

by An(x1, . . . , xn) =
∑m

j=1 xj . Then for (x1, . . . , xm) ∈ (C0[0, T ])
m,

F

( m∑
j=1

xj

)
= F ◦Am(x1, . . . , xm)

For each j ∈ {1, . . . ,m}, the xj-section of F ◦ Am is SIM on C0[0, T ], because Am is
continuous on (C0[0, T ])

m. Next, for notational conveniences, we write the conditional
analytic Feynman integral

Eanfq (F |XG = η⃗)

by
Eanfq (F (x)|XG(x) = η⃗)

as used in [22, 28].
Using these conventions and applying equation (4.10), we have the following Fubini

theorem for the iterated conditional analytic Feynman integral.

Corollary 4.7. Let Fσ and XG be as in Theorem 4.3. Then for any finite sequence
{q1, . . . , qm} in R \ {0} which satisfies the condition (4.12), it follows that

Eanfqm

(
Eanfqm−1

(
· · ·

(
Eanfq1 (Fσ ◦Am(x1, . . . , xm)

∣∣∣XG(x1) = ξ⃗(1)
)

· · ·
∣∣∣XG(xm−1) = ξ⃗(m−1))

∣∣∣XG(xm) = ξ⃗(m)
)

= Eanfαm

(
Fσ(x)

∣∣∣∣XG(x) =

m∑
k=1

ξ⃗(k)
)

for a.e. (ξ⃗(1), . . . , ξ⃗(m)) in (Rn)m, where αm is given by (4.14).
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5 Iterated conditional Fourier–Feynman transform: Fu-
bini theorems

In this section, we establish Fubini theorems for the iterated CFFT. The conditioning
functions in our Fubini theorems for the iterated CFFT are uncorrelated finite-dimensional
random vectors on the Wiener space.

Given a finite subset G of N , let {Gk}mk=1 be a partition of G. For each k ∈ {1, . . . ,m},
say Gk = {eGk

1 , . . . , eGk
nk
}. Let XG be a conditioning function given by (2.1). Then we can

rewrite XG by

XG(x) = XG1
(x) ∧XG2

(x) ∧ · · · ∧XGm
(x)

= (〈eG1
1 , x〉, . . . , 〈eG1

n1
, x〉) ∧ (〈eG2

1 , x〉, . . . , 〈eG2
n2
, x〉) ∧ · · · ∧ (〈eGm

1 , x〉, . . . , 〈eGm
nm
, x〉)

= (〈eG1
1 , x〉, . . . , 〈eG1

n1
, x〉, 〈eG2

1 , x〉, . . . , 〈eG2
n2
, x〉, . . . , 〈eGm

1 , x〉, . . . , 〈eGm
nm
, x〉).

(5.1)
Let σ be a complex measure in M(L2[0, T ]). For a finite sequence Q = {q1, . . . , qm} of

nonzero real numbers which satisfies the condition (4.12), and a conditioning function XG

given by (5.1), define a complex measure σ
(q1,...,qm)
G1∪···∪Gm

: B(L2[0, T ]) → C by

σ
(q1,...,qm)
G1∪···∪Gm

(U) =

∫
U

exp

{
− i

2

m∑
k=1

Qm,(k)

nk∑
jk=1

(u, eGk
jk
)22

}
dσ(u) (5.2)

where nk = |Gk| and

Qm,(k) =
1

αm
− 1

qk
(5.3)

for each k ∈ {1, 2, . . . ,m}, and where αm is given by (4.14). Then σ
(q1,...,qm)
G1∪···∪Gm

is an element
of the sphere S(σ) defined by (4.3) above.

Given a functional Fσ in S(L2[0, T ]), let

R(q1,...,qm)
G1∪···∪Gm

(Fσ) = F
σ
(q1,...,qm)

G1∪···∪Gm

.

Then in view of (4.2), one can see that

‖Fσ‖ =
∥∥R(q1,...,qm)

G1∪···∪Gm
(Fσ)

∥∥ i.e., ‖Fσ‖ =
∥∥∥F

σ
(q1,...,qm)

G1∪···∪Gm

∥∥∥.
Under these conventions, we assert the following Fubini theorem for the iterated CFFT.

Theorem 5.1. Given a finite subset G of N , the partition {Gk}mk=1 of G and the conditioning
function XG be as above. Then for any functional Fσ ∈ S(L2[0, T ]) given by (4.1) and any
finite sequence Q = {q1, . . . , qm} in R \ {0} which satisfies the condition (4.12), it follows
that

T (1)
qm

(
T (1)
qm−1

(
· · ·T (1)

q1 (Fσ|XG1
)( · , ξ⃗(1)) · · ·

∣∣∣XGm−1

)
( · , ξ⃗(m−1))

∣∣∣XGm

)
(y, ξ⃗(m))

= T (1)
αm

(
F
σ
(q1,...,qm)

G1∪···∪Gm

∣∣∣XG

)(
y, ξ⃗(1) ∧ · · · ∧ ξ⃗(m)

) (5.4)
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for SI-a.e. y ∈ C0[0, T ] and a.e.

ξ⃗(1) ∧ · · · ∧ ξ⃗(m) = (ξ
(1)
1 , . . . , ξ(1)n1

, . . . , ξ
(m)
1 , . . . , ξ(m)

nm
) ∈ Rn1+···+nm ,

where αm is given by (4.14). Also, both of the expressions in (5.4) are given by the expression∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2αm

[
‖u‖22 −

n∑
j=1

(u, eGj )
2
2

]
+ i

m∑
k=1

n∑
j=1

ξ
(k)
j (u, eGj )2

}
dσ(u).

Proof. First, in view of Remark 4.5, the iterated CFFT in (5.4) exists. Next, using (4.7)
m-times, (4.14), (5.3), (5.2), and (4.7) again, it follows that

T (1)
qm

(
T (1)
qm−1

(
· · ·T (1)

q1 (Fσ|XG1)( · , ξ⃗(1)) · · ·
∣∣∣XGm−1

)
( · , ξ⃗(m−1))

∣∣∣XGm

)
(y, ξ⃗(m))

=

∫
L2[0,T ]

exp

{
i〈u, y〉 −

m∑
k=1

i

2qk

[
‖u‖22 −

nk∑
jk=1

(u, eGk
jk
)22

]
+ i

m∑
k=1

nk∑
jk=1

ξ
(k)
jk

(u, eGk
jk
)2

}
dσ(u)

=

∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2αm
‖u‖22 + i

m∑
k=1

1

2qk

nk∑
jk=1

(u, eGk
jk
)22

+ i

m∑
k=1

nk∑
jk=1

ξ
(k)
jk

(u, eGk
jk
)2

}
dσ(u)

=

∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2αm

[
‖u‖22 −

m∑
k=1

nk∑
jk=1

(u, eGk
jk
)22

]
+ i

m∑
k=1

nk∑
jk=1

ξ
(k)
jk

(u, eGk
jk
)2

− i

2αm

m∑
k=1

nk∑
jk=1

(u, eGk
jk
)22 + i

m∑
k=1

1

2qk

nk∑
jk=1

(u, eGk
jk
)22

}
dσ(u)

=

∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2αm

[
‖u‖22 −

n1+···+nm∑
j=1

(u, eG1∪···∪Gm
j )22

]

+ i

m∑
k=1

nk∑
jk=1

ξ
(k)
jk

(u, eGk
jk
)2 −

i

2

m∑
k=1

Qm,(k)

nk∑
jk=1

(u, eGk
jk
)22

}
dσ(u)

=

∫
L2[0,T ]

exp

{
i〈u, y〉 − i

2αm

[
‖u‖22 −

n1+···+nm∑
j=1

(u, eG1∪···∪Gm
j )22

]

+ i

m∑
k=1

nk∑
jk=1

ξ
(k)
jk

(u, eGk
jk
)2

}
dσ

(q1,...,qm)
G1∪···∪Gm

(u)

= T (1)
αm

(
F
σ
(q1,...,qm)

G1∪···∪Gm

∣∣∣XG

)(
y, ξ⃗(1) ∧ · · · ∧ ξ⃗(m)

)
for SI-a.e. y ∈ C0[0, T ] and a.e.

ξ⃗(1) ∧ · · · ∧ ξ⃗(m) = (ξ
(1)
1 , . . . , ξ(1)n1

, . . . , ξ
(m)
1 , . . . , ξ(m)

nm
) ∈ Rn1+···+nm ,

as desired.
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We provide another Fubini theorem for the iterated CFFT without proof.

Theorem 5.2. Let G, {Gk}mk=1, and XG be as in Theorem 5.1. Then for any functional
Fσ ∈ S(L2[0, T ]) given by (4.1) and any finite sequence Q = {q1, . . . , qm} in R \ {0} which
satisfies the condition (4.12), it follows that

T (1)
qm

(
T (1)
qm−1

(
· · ·T (1)

q1

(
F
σ
(−q1,...,−qm)

G1∪···∪Gm

∣∣∣XG1

)
( · , ξ⃗(1)) · · ·

∣∣∣XGm−1

)
( · , ξ⃗(m−1))

∣∣∣XGm

)
(y, ξ⃗(m))

= T (1)
αm

(
Fσ

∣∣XG
)(
y, ξ⃗(1) ∧ · · · ∧ ξ⃗(m)

)
for SI-a.e. y ∈ C0[0, T ] and a.e.

ξ⃗(1) ∧ · · · ∧ ξ⃗(m) = (ξ
(1)
1 , . . . , ξ(1)n1

, . . . , ξ
(m)
1 , . . . , ξ(m)

nm
) ∈ Rn1+···+nm ,

where αm is given by (4.14).

We finish this paper with Fubini theorems for iterated conditional Feynman integrals.

Corollary 5.3. Let G, {Gk}mk=1, and XG be as in Theorem 5.1. Then for any functional
Fσ ∈ S(L2[0, T ]) given by (4.1) and any finite sequence Q = {q1, . . . , qm} in R \ {0} which
satisfies the condition (4.12), it follows that

Eanfqm

(
Eanfqm−1

(
· · ·Eanfq1

(
Fσ ◦Am(x1, . . . , xm)

∣∣∣XG1
(x1) = ξ⃗(1)

)
· · ·

∣∣∣XGm−1
(xm−1) = ξ⃗(m−1))

∣∣∣XGm
(xm) = ξ⃗(m)

)
= Eanfαm

(
F
σ
(q1,...,qm)

G1∪···∪Gm

(x)
∣∣∣XG(x) = ξ⃗(1) ∧ · · · ∧ ξ⃗(m)

)
and

Eanfqm

(
Eanfqm−1

(
· · ·Eanfq1

(
F
σ
(−q1,...,−qm)

G1∪···∪Gm

◦Am(x1, . . . , xm)
∣∣∣XG1

(x1) = ξ⃗(1)
)

· · ·
∣∣∣XGm−1(xm−1) = ξ⃗(m−1))

∣∣∣XGm(xm) = ξ⃗(m)
)

= Eanfαm

(
Fσ(x)

∣∣∣∣XG(x) = ξ⃗(1) ∧ · · · ∧ ξ⃗(m)
)

for SI-a.e. y ∈ C0[0, T ] and a.e.

ξ⃗(1) ∧ · · · ∧ ξ⃗(m) = (ξ
(1)
1 , . . . , ξ(1)n1

, . . . , ξ
(m)
1 , . . . , ξ(m)

nm
) ∈ Rn1+···+nm ,

respectively, where αm is given by (4.14).

An epilogue In the celebrated paper [25], Park and and Skoug suggested the concept
of the CFFT and the corresponding conditional convolution product of SIM functionals on
C0[0, T ]. These fundamental concepts have been very useful to us in establishing many of
the results in [8, 9]. We feel strongly that the fundamental concepts in [25] will prove to
be very useful in future work by ourselves as well as other researchers in this area. The
framework and methods we used to obtain the results in this article are very dependent
upon the idea in the paper [24] concerning the evaluation formula for conditional Wiener
integral given vector-valued conditioning function.

Acknowledgement The authors would like to express their gratitude to the editor and the
referee for their valuable comments and suggestions which have improved the original paper.
Jae Gil Choi worked as the leading author.
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