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Abstract

In the Tower of Hanoi puzzle, moving a disc from one peg to another is called an
elementary move, in total there are six elementary moves. In this paper, we present
the sequence φn, and how it can be applied to find the numbers f ij

n (x), respectively
gijn (d, x), of moves of one of six types x made by all, respectively each, of the n discs d
in the optimal solution for the classical Tower of Hanoi game to transfer a tower from
peg i to peg j. We establish many results related to φn, f

ij
n (x), and gijn (d, x), such as

explicit and implicit forms, generating functions, and more.
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1 Introduction

The problem of the Tower of Hanoi is one of the most famous problems used to introduce the
concept of mathematical induction. Since its invention in 1883 by the French mathematician
Édouard Lucas [13, p. 55–59], this game has received a lot of attention from mathematicians
due to the interesting mathematics hiding in and around this puzzle.

Recall that the Tower of Hanoi puzzle consists of n discs of different sizes, and three
pegs i, j, and k. In the beginning, all discs are stacked on one of the three pegs, in which
no disc lies on top of a smaller disc. The goal is to transfer the whole tower of the n discs
to another peg using the minimum number of moves, where a legal move is to move one
topmost disc at a time and never put a disc on a smaller one.

The Tower of Hanoi with n discs can be solved optimally in un = 2n − 1 moves, using
the following recursive procedure: First move the sub-tower of the first (n − 1) discs from
the source peg i to the auxiliary peg k where j is the destination peg, then move the biggest
disc to the destination peg j, and finally move the sub-tower of the first (n− 1) discs to the
final peg. This recursive procedure satisfies the following recurrence relation

u0 = 0, un = 2un−1 + 1, n ≥ 1. (1.1)

The optimal sequence of moves is unique and is of length 2n − 1 [8, Theorem 2.1]. We
call an elementary move x, a move of a disc from one peg to another peg. There are six
elementary moves a = ij (which denotes a move of a topmost disc from peg i to peg j),
b = jk, c = ki, a = ji, b = kj, and c = ik. This coding of moves is inspired from [1].
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Figure 1: A complete digraph with three vertices which represents the three pegs and the
arcs represent the moves between pegs.

In this paper, we introduce a recursive function that counts the number of each ele-
mentary move in the optimal sequence of moves. We denote this function by f ij

n (x) where
x ∈ A = {a, b, c, a, b, c} is the elementary move to be counted in the optimal sequence of
moves that transfer a tower of n discs from peg i to peg j.

f ij
n :

{
A → N;
x 7→ f ij

n (x).

We also introduce another recursive function

gijn :

{
D ×A → N;
(d, x) 7→ gijn (d, x),

where D = {1, . . . , n} is the set of discs numbered in increasing order of size. This function
calculates the number of each elementary move that each disc makes during the optimal
solution, i.e., given a specified disc d ∈ D and an elementary move x ∈ A, then gijn (d, x) is
the number of times disc d made the elementary move x during the optimal solution that
transfers a tower of n discs from peg i to peg j.

In this paper, we have employed Iverson’s convention which is defined by

[S] =

{
1, if S is true;

0, otherwise,

where S be a mathematical statement.
We present combinatorial results and properties of these two functions such as recurrent

relations, explicit and implicit formulas, ordinary generating functions, and more.
But before starting to deal with these functions, we present the sequence φn, which will

be very useful when dealing with the functions f ij
n (x) and gijn (d, x), it will be related to
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these two functions to obtain many of their properties. The presentation of the sequence
φn will be the main topic of the next section.

In [2, Section 6.4], the authors showed that there is a 6-state finite automaton computing
the nth move of the optimal solution to the Tower of Hanoi puzzle, on input n in base 2,
and therefore one can compute the number of each type of move by considering the matrices
that encode the transitions between states on inputs 0 and 1. This is more or less the same
output of our function f ij

n (x) which is the number of each elementary move in the optimal
sequence of moves. Also, using the facts in [8, Chapter 2], one can find the numbers f ij

n (x),
respectively gijn (d, x), of moves of one of six types x made by all, respectively each, of the
n discs d in the optimal solution for the classical Tower of Hanoi game to transfer a tower
from peg i to peg j, as we will see in Section 4. Since each disc 1 moves exactly 2n−1 times
in a cyclic way [8, Proposition 2.4], and observing that the Lichtenberg sequence l can be
characterized by ln−1 = 1

3 (2
n−2n mod 2) (cf. [6] for more about the Lichtenberg sequence),

then we arrive, for odd n, at gijn (1, a) = ln−2+1 and gijn (1, x) = ln−2 if x ∈ {b, c}; similarly,
gijn (1, a) = ln−2 and gijn (1, x) = ln−2 + 1 if x ∈ {b, c} for even n ≥ 1. All other values
of gijn (1, x) are 0. This summarizes essentially the content of Remark 3. Making use of
Proposition 6 we obtain all the numbers gijn (d, x) and summing over d, i.e., using identity
(4.2), we arrive at the results on f ij

n (x) of Remark 2.
We shall mention that many classical sequences are hidden in the Tower of Hanoi puzzle

and in its variations. We mention here Stern’s diatomic sequence [7], the Stirling numbers of
the second kind [11], the second order Eulerian numbers, Lah numbers and Catalan numbers
[12], Fibonacci numbers [10], the Anti-Ramsey numbers [4], but also Sierpinski gasket [9]
and the Pascal triangle [5]. We mention also [3] for more counting on the Tower of Hanoi.
For more information about the Tower of Hanoi problem, we refer to the comprehensive
monograph [8].

2 Presentation of an interesting sequence

In this section we present a new integer sequence that is closely related to the Tower of
Hanoi as it is described in the next section, we denote this sequence by φn. We show that
in the optimal sequence of moves, the number of elementary moves a is φn − 3φn−2, while
elementary moves b and c appear the same number of times which is φn−2; on the other
side the number of elementary move a is 2φn−3, and the number of elementary move b is
the same as the number of elementary move c which equals to φn−1 − 2φn−3. As we can
see the sequence φn appears in the number of each elementary move. Therefore, before
we present the recursive function f ij

n (x) mentioned in the introduction, we present some
properties and combinatorial identities of the sequence φn.

Definition 1. For all integers n ≥ 2, we define φn using the following recurrence relation

φn = 4φn−2 +

⌊
n+ 1

2

⌋
, (2.1)

with φ0 = 0, φ1 = 1.

Property 1. For all integers n ≥ 1, we have

φ2n−1 = φ2n.
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Proof. For n = 1, we have φ1 = φ2 = 1. Now we suppose that the property is true up to
n− 1 ≥ 1, then we have

φ2n−1 = 4φ2n−3 +

⌊
2n

2

⌋
= 4φ2n−3 + n,

φ2n = 4φ2n−2 +

⌊
2n+ 1

2

⌋
= 4φ2n−2 + n.

By the induction hypothesis we have φ2n−3 = φ2n−2. Hence the result.

Remark 1. For all integers n ≥ 1, we have

φ2n−1 = φ2n = A014825(n).

The sequence φn does not yet have a combinatorial interpretation nor does the sequence
A014825. However, we will see in the next sections, that this sequence is related to f ij

n and
gijn . The first few terms of sequence φ2n are

0, 1, 6, 27, 112, 453, 1818, 7279, 29124, 116505, . . .

Let us mention that the sequence (φ2n)n≥0 is the sequence of partial sums of the odd
Lichtenberg numbers

m0 = 0, mn = l2n−1, n ≥ 1,

cf. [6], where

ln =
2

3
· 2n − 1

6
(−1)n − 1

2
, n ≥ 0,

is the Lichtenberg sequence A000975 in the OEIS.
Moreover, the odd Lichtenberg numbers mn = 1

3 (4
n − 1), n ≥ 0, are A002450, and the

even Lichtenberg numbers given by l2n = 2l2n−1 = 2mn, n ≥ 0, are A020988 with partial
sums A145766 in the OEIS (note that the sequences of Lichtenberg numbers appear later
in Remark 3).

In the rest of this section, we establish some of the properties of the sequence φ such as
explicit formulas and ordinary generating functions.

Lemma 1. For all integers n ≥ 4, we have

φn = 5φn−2 − 4φn−4 + 1, (2.2)

with φ0 = 0, φ1 = φ2 = 1, and φ3 = 6.

Proof. We have φn = 4φn−2 +
⌊
n+1
2

⌋
and φn−2 = 4φn−4 +

⌊
n−1
2

⌋
, then

φn − φn−2 = 4φn−2 − 4φn−4 +

⌊
n+ 1

2

⌋
−
⌊
n− 1

2

⌋
.

We have
⌊
n+1
2

⌋
−
⌊
n−1
2

⌋
= 1 for all n ≥ 0, therefore φn = 5φn−2 − 4φn−4 + 1.
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Theorem 1. Let P (z) =
∑
n≥0

φnz
n be the ordinary generating function of φn, then

P (z) =
z

(1− 4z2)(1 + z)(1− z)2
. (2.3)

Proof. We have φn = 5φn−2 − 4φn−4 + 1 then∑
n≥4

φnz
n−4 = 5

∑
n≥4

φn−2z
n−4 − 4

∑
n≥4

φn−4z
n−4 +

∑
n≥4

zn−4,

therefore

z−4(P (z)− φ0 − zφ1 − z2φ2 − z3φ3) = 5z−2(P (z)− φ0 − zφ1)− 4P (z) +
1

1− z
.

Hence

P (z)(1− 5z2 + 4z4) = z + z2 + z3 +
z4

1− z
.

Finally

P (z) =
z

(1− 4z2)(1 + z)(1− z)2
.

Corollary 1. For all integers n ≥ 0, we have

φn =
∑

r+s+2t=n

(−1)rs4t. (2.4)

Proof. We have

P (z) =
∑
n≥0

φnz
n

=
∑
r≥0

(−1)rzr
∑
s≥0

szs
∑
t≥0

4tz2t

=
∑
n≥0

( ∑
r+s+2t=n

(−1)rs4t

)
zn.

It finally comes by identification

φn =
∑

r+s+2t=n

(−1)rs4t.

Corollary 2. For all integers n ≥ 0, we have

φn =

⌊n
2 ⌋∑

t=0

4t
⌊
n− 2t+ 1

2

⌋
. (2.5)
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Proof. We have

φn =
∑

r+s+2t=n

(−1)rs4t

=

⌊n
2 ⌋∑

t=0

4t
∑

r+s=n−2t

(−1)rs

=

⌊n
2 ⌋∑

t=0

4t
n−2t∑
s=0

(−1)n−2t−ss

=

⌊n
2 ⌋∑

t=0

(−1)n−2t4t
n−2t∑
s=0

(−1)ss.

We know that
n∑

s=0

(−1)ss = (−1)n
⌊
n+ 1

2

⌋
=

{
n
2 , if n even;

−n+1
2 , otherwise.

Therefore

φn =

⌊n
2 ⌋∑

t=0

(−1)n−2t4t(−1)n−2t

⌊
n− 2t+ 1

2

⌋

=

⌊n
2 ⌋∑

t=0

4t
⌊
n− 2t+ 1

2

⌋
.

Lemma 2. For all integers n ≥ 0, we have

n∑
t=0

t4t =
4

9
(4n(3n− 1) + 1). (2.6)

Proof. For n = 0, we have
0∑

t=0
t4t = 0 = 4

9 (4
0(3(0)−1)+1). Let us suppose that the lemma

is true up to n− 1, and we will prove it for n. We have
n∑

t=0
t4t =

n−1∑
t=0

4tt+n4n = 4
9 (4

n−1(3(n− 1)− 1)+1)+n4n = 4
9 (3n4

n−1− 4n+1+9n4n−1) =

4
9 (4

n(3n− 1) + 1).

Corollary 3. For all integers n ≥ 0, we have

φn =
1

9
(4⌊

n+1
2 ⌋+1 − 3

⌊
n+ 1

2

⌋
− 4) =

{
1
18 (2

n+3 − 3n− 8), if n even;
1
18 (2

n+4 − 3n− 11), otherwise.
(2.7)

and φ−1 = 0.
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Proof. We have φn =
⌊n

2 ⌋∑
t=0

4t
⌊
n−2t+1

2

⌋
, then

φn =

⌊n
2 ⌋∑

t=0

4t
n− 2t

2
=

1

2

n

n
2∑

t=0

4t − 2

n
2∑

t=0

4tt

 , if n even.

φn =

⌊n−1
2 ⌋∑

t=0

4t
n− 2t+ 1

2
=

1

2

(n+ 1)

n−1
2∑

t=0

4t − 2

n−1
2∑

t=0

4tt

 , if n odd.

Using Lemma 2 and some elementary calculations we can find the result.

Corollary 4. For all integers n ≥ 0, we have

φn =

⌊n+1
2 ⌋−1∑
t=0

(⌊n+1
2

⌋
+ 1

t

)
3t. (2.8)

Proof. We have

φn =
1

9
(4⌊

n+1
2 ⌋+1 − 3

⌊
n+ 1

2

⌋
− 4)

=
1

9
(

⌊n+1
2 ⌋+1∑
t=0

(⌊n+1
2

⌋
+ 1

t

)
3t − 3

⌊
n+ 1

2

⌋
− 4)

=
1

9
(

⌊n+1
2 ⌋+1∑
t=2

(⌊n+1
2

⌋
+ 1

t

)
3t + 1 + 3(

⌊
n+ 1

2

⌋
+ 1)− 3

⌊
n+ 1

2

⌋
− 4)

=

⌊n+1
2 ⌋+1∑
t=2

(⌊n+1
2

⌋
+ 1

t

)
3t−2

=

⌊n+1
2 ⌋−1∑
t=0

(⌊n+1
2

⌋
+ 1

t

)
3t.

Corollary 5. For all integers n ≥ 0, we have

φn =

⌊n+1
2 ⌋∑

t=0

2t∑
r=0

(−1)r+1JrJ2t−r, (2.9)

where Jn is the Jacobsthal sequence.
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Proof. We know that Jn = 1
3 (2

n − (−1)n) [14], then

⌊n+1
2 ⌋∑

t=0

2t∑
r=0

(−1)r+1JrJ2t−r =
1

9

⌊n+1
2 ⌋∑

t=0

2t∑
r=0

(−1)r+1(2r − (−1)r)(22t−r − (−1)2t−r)

=
1

9

⌊n+1
2 ⌋∑

t=0

2t∑
r=0

(−1)r+1(22t + (−1)r+12r + (−1)r+122t−r + 1)

=
1

9

⌊n+1
2 ⌋∑

t=0

(
2t∑

r=0

(2r + 22t−r + (−1)r+1(22t + 1))

)

=
1

9

⌊n+1
2 ⌋∑

t=0

2t∑
r=0

2r + 22t
2t∑

r=0

1

2r
− (22t + 1)

2t∑
r=0

(−1)r

=
1

9

⌊n+1
2 ⌋∑

t=0

(22t+1 − 1 + 22t+1 − 1− 22t − 1)

=
1

9

⌊n+1
2 ⌋∑

t=0

(3× 4t − 3)

=
1

9
(4⌊

n+1
2 ⌋+1 − 1− 3(

⌊
n+ 1

2

⌋
+ 1))

=
1

9
(4⌊

n+1
2 ⌋+1 − 3

⌊
n+ 1

2

⌋
− 4)

= φn.

3 Counting the number of each elementary move

In this section, we present the recursive function

f ij
n :

{
A → N;
x 7→ f ij

n (x),

where x ∈ A = {a, b, c, a, b, c} is an elementary move. f ij
n (x) counts the number of times

that the move x appears in the optimal sequence of elementary moves that transfers a tower
of n discs from peg i to peg j using peg k as an auxiliary peg. The optimal sequences are
as follows:
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n optimal sequence
1 a

2 c a b

3 a c b a c b a

4 c a b c a b c a b c a b c a b

5 a c b a c b a c b a c b a c b a c b a c b a c b a c b a c b a

6
c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

a b c a b c a b c a b c a b

Table 1: The optimal sequences of moves for the first values of n.

The following table shows the number of elementary moves in the optimal sequences
above.

n f ij
n (a) f ij

n (c) f ij
n (b) f ij

n (b) f ij
n (c) f ij

n (a)
∑
x∈A

f ij
n (x)

1 1 0 0 0 0 0 1
2 1 1 1 0 0 0 3
3 3 1 1 1 1 0 7
4 3 4 4 1 1 2 15
5 9 4 4 6 6 2 31
6 9 15 15 6 6 12 63
7 31 15 15 27 27 12 127
8 31 58 58 27 27 54 255
9 117 58 58 112 112 54 511
10 117 229 229 112 112 224 1023
...

...
...

...
...

...
...

...

Table 2: The number of each elementary move in the optimal sequence for the first values
of n.

It is clear that for all n ≥ 0, and x ∈ A, we have∑
x∈A

f ij
n (x) = 2n − 1. (3.1)

We introduced f ij
n (x) as a recursive function because of the following theorem.

Theorem 2. For all integers n ≥ 4, x ∈ A, f ij
n (x) satisfies the following recurrence relation

f ij
n (x) = 5f ij

n−2(x)− 4f ij
n−4(x) + 2[x ∈ {a}] + [x ∈ {b, c}]− [x ∈ {c, b}]− 2[x ∈ {a}], (3.2)

where f ij
0 (x) = 0, f ij

1 (x) = [x ∈ {a}], f ij
2 (x) = [x ∈ {a, c, b}], and f ij

3 (x) = 3[x ∈ {a}]+[x ∈
{c, b, c, b}].

Proof. Let Sij
n be the optimal sequence of moves that transfer a tower of n discs from peg i

to peg j; then using the recursive procedure that solves the Tower of Hanoi problem which
is described in the introduction, we find

Sij
n = Sik

n−1[i → j]Skj
n−1,
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where [i → j] denotes a single move from peg i to j. Then we obtain the following recursive
formula

f ij
n (x) = f ik

n−1(x) + [x ∈ {a}] + fkj
n−1(x)

= f ij
n−2(x) + [x ∈ {c}] + f jk

n−2(x) + [x ∈ {a}] + fki
n−2(x) + [x ∈ {b}] + f ij

n−2(x)

= 2f ij
n−2(x) + f ji

n−1(x)− [x ∈ {a}] + [x ∈ {c}] + [x ∈ {a}] + [x ∈ {b}]
= 2f ij

n−2(x) + f ji
n−1(x)− [x ∈ {a}] + [x ∈ {c, a, b}].

Which gives
f ji
n−1(x) = f ij

n (x)− 2f ij
n−2(x) + [x ∈ {a}]− [x ∈ {c, a, b}]. (3.3)

Thus, we have

f ji
n (x) = f ij

n+1(x)− 2f ij
n−1(x) + [x ∈ {a}]− [x ∈ {c, a, b}], (3.4)

and
f ji
n−2(x) = f ij

n−1(x)− 2f ij
n−3(x) + [x ∈ {a}]− [x ∈ {c, a, b}]. (3.5)

On the other hand, we have

f ji
n (x) = 2f ji

n−2(x) + f ij
n−1(x)− [x ∈ {a}] + [x ∈ {b, a, c}]. (3.6)

By replacing (3.4) and (3.5) in (3.6), we obtain

f ij
n+1(x) = 5f ij

n−1(x)− 4f ij
n−3(x) + 2[x ∈ {a}] + [x ∈ {b, c}]− [x ∈ {c, b}]− 2[x ∈ {a}].

Hence, the result.

Proposition 1. In the optimal solution, the number of times we move discs from the
destination (resp., source) peg j (resp., i) to the auxiliary peg k is equal to the number of
times we move discs from the auxiliary peg k to the source (resp., destination) peg i (resp.,
j).

We will see further in this section the reason why this proposition is true.

Corollary 6. For all integers n ≥ 5, x ∈ A, f ij
n (x) satisfies the following homogeneous

recurrence relation

f ij
n (x) = f ij

n−1(x) + 5f ij
n−2(x)− 5f ij

n−3(x)− 4f ij
n−4(x) + 4f ij

n−5(x). (3.7)

Proof. From Theorem 2, we have

f ij
n−1(x) = 5f ij

n−3(x)− 4f ij
n−5(x)+ 2[x ∈ {a}] + [x ∈ {b, c}]− [x ∈ {c, b}]− 2[x ∈ {a}], (3.8)

By subtracting (3.8) from (3.2), we obtain

f ij
n (x)− f ij

n−1(x) = 5f ij
n−2(x)− 4f ij

n−4(x)− 5f ij
n−3(x) + 4f ij

n−5(x). (3.9)

Hence, the result.
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By replacing x with each possible move of the six elementary moves in relation (3.2), we
find a recurrence relation to the number of each elementary move in the optimal solution
as the following corollary presents.

Corollary 7. For all integers n ≥ 0, and x ∈ A, we have

f ij
n+1(a) =


0, if n = 0;

1, if n = 1, 2;

5f ij
n−1(a)− 4f ij

n−3(a)− 2, otherwise.

(3.10)

f ij
n+1(b) =

{
0, if n = 0, 1, 2;

5f ij
n−1(b)− 4f ij

n−3(b) + 1, otherwise.
(3.11)

f ij
n+1(c) =

{
0, if n = 0, 1, 2;

5f ij
n−1(c)− 4f ij

n−3(c) + 1, otherwise.
(3.12)

f ij
n+1(a) =

{
0, if n = 0, 1, 2;

5f ij
n−1(a)− 4f ij

n−3(a) + 2, otherwise.
(3.13)

f ij
n+1(b) =


0, if n = 0, 1;

1, if n = 2;

5f ij
n−1(b)− 4f ij

n−3(b)− 1, otherwise.

(3.14)

f ij
n+1(c) =


0, if n = 0, 1;

1, if n = 2;

5f ij
n−1(c)− 4f ij

n−3(c)− 1, otherwise.

(3.15)

Using this last corollary, we remark that f ij
n (c) = f ij

n (b), and f ij
n (b) = f ij

n (c). Now we
can see why Proposition 1 is true.

Theorem 3. For all x ∈ A, let Gij(z, x) =
∑
n≥0

f ij
n (x)zn be the ordinary generating function

of the sequence f ij
n (x), then

Gij(z, x) =

[x ∈ {a}]z + [x ∈ {c, b}]z2 + ([x ∈ {b, c}]− 3[x ∈ {a}])z3
+ 2([x ∈ {a}]− [x ∈ {c, b}])z4

(1− 4z2)(1 + z)(1− z)2
. (3.16)

Proof. We have

f ij
n (x) = 5f ij

n−2(x)− 4f ij
n−4(x) + ϵ(x),

where ϵ(x) = 2[x ∈ {a}] + [x ∈ {b}] + [x ∈ {c}]− [x ∈ {c}]− [x ∈ {b}]− 2[x ∈ {a}].
Therefore∑

n≥4

f ij
n (x)zn−4 = 5

∑
n≥4

f ij
n−2(x)z

n−4 − 4
∑
n≥4

f ij
n−4(x)z

n−4 + ϵ(x)
∑
n≥4

zn−4,
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which gives

Gij(z, x)(z−4 − 5z−2 + 4) = z−4(f ij
1 (x)z + f ij

2 (x)z2 + f ij
3 (x)z3)− 5z−2(f ij

1 (x)z) +
ϵ(x)

1− z
,

then

Gij(z, x) =

f ij
1 (x)z + (f ij

2 (x)− f ij
1 (x))z2 + (f ij

3 (x)− f ij
2 (x)− 5f ij

1 (x))z3

+ (ϵ(x)− f ij
3 (x) + 5f ij

1 (x))z4

(1− z)(1− 5z2 + 4z4)
.

Hence the result.

Now we can identify the ordinary generating functions of each sequence of the six se-
quences f ij

n (a), f ij
n (b), f ij

n (c), f ij
n (a), f ij

n (b) and f ij
n (c).

Corollary 8. The ordinary generating functions of the sequences that count the number of
each elementary move in the set A are

Gij(z, a) =
z − 3z3

(1 + z)(1− z)2(1− 4z2)
, (3.17)

Gij(z, b) =
z3

(1 + z)(1− z)2(1− 4z2)
, (3.18)

Gij(z, c) =
z3

(1 + z)(1− z)2(1− 4z2)
, (3.19)

Gij(z, a) =
2z4

(1 + z)(1− z)2(1− 4z2)
, (3.20)

Gij(z, b) =
z2 − 2z4

(1 + z)(1− z)2(1− 4z2)
, (3.21)

Gij(z, c) =
z2 − 2z4

(1 + z)(1− z)2(1− 4z2)
. (3.22)

The following theorem presents the relation between f ij
n (x) and the sequence φn pre-

sented in the previous section.

Theorem 4. For all integers n ≥ 0, x ∈ A we have

f ij
n (x) = [x ∈ {a}]φn + [x ∈ {c, b}]φn−1 + ([x ∈ {b, c}]− 3[x ∈ {a}])φn−2

+ (2[x ∈ {a}]− 2[x ∈ {c, b}])φn−3.
(3.23)
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Proof. We have

Gij(z, x) =

[x ∈ {a}]z + [x ∈ {c, b}]z2 + ([x ∈ {b, c}]− 3[x ∈ {a}])z3
+ (2[x ∈ {a}]− 2[x ∈ {c, b}])z4

(1− 4z2)(1 + z)(1− z)2

= ([x ∈ {a}] + [x ∈ {c, b}]z + ([x ∈ {b, c}]− 3[x ∈ {a}])z2

+ (2[x ∈ {a}]− 2[x ∈ {c, b}])z3)P (z)

=
∑
n≥0

([x ∈ {a}]φn + [x ∈ {c, b}]φn−1 + ([x ∈ {b, c}]− 3[x ∈ {a}])φn−2

+ (2[x ∈ {a}]− 2[x ∈ {c, b}])φn−3)z
n.

From this last theorem and by using Property 1, we find the following result.

Corollary 9. For all integers n ≥ 0, x ∈ A, we have

f ij
n (x) =



[x ∈ {a, c, b}]φn + ([x ∈ {b, c}] + 2[x ∈ {a}]− 3[x ∈ {a}]
− 2[x ∈ {b, c}])φn−2,

if n even;

[x ∈ {a}]φn + ([x ∈ {c, b, c, b}]− 3[x ∈ {a}])φn−1

+ 2([x ∈ {a}]− [x ∈ {c, b}])φn−3,
otherwise.

By reordering the terms of the right side of equation (3.23) we find the identity

f ij
n (x) = (φn − 3φn−2)[x ∈ {a}] + φn−2[x ∈ {b, c}] + 2φn−3[x ∈ {a}]

+ (φn−1 − 2φn−3)[x ∈ {b, c}].
(3.24)

Replacing x with each possible value of the six values, we find the relation between the
sequence of the number of each elementary move and φn.

Corollary 10. For all integers n ≥ 0, we have

f ij
n (a) = φn − 3φn−2, (3.25)

f ij
n (b) = φn−2, (3.26)

f ij
n (c) = φn−2, (3.27)

f ij
n (a) = 2φn−3, (3.28)

f ij
n (b) = φn−1 − 2φn−3, (3.29)

f ij
n (c) = φn−1 − 2φn−3. (3.30)

Using Corollaries 3 and 10, we can find an explicit formula for each one of the six se-
quences f ij

n (a), f ij
n (b), f ij

n (c), f ij
n (a), f ij

n (b) and f ij
n (c), as the following proposition presents.
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Proposition 2. For all integers n ≥ 0 we have

f ij
n (a) =

1

9
(4⌊

n+1
2 ⌋ + 6

⌊
n+ 1

2

⌋
− 1) =

{
1
9 (2

n + 3n− 1), if n even;
1
9 (2

n+1 + 3n+ 2), otherwise.
(3.31)

f ij
n (b) =

1

9
(4⌊

n−1
2 ⌋+1 − 3

⌊
n− 1

2

⌋
− 4) =

{
1
18 (2

n+1 − 3n− 2), if n even;
1
18 (2

n+2 − 3n− 5), otherwise.
(3.32)

f ij
n (c) =

1

9
(4⌊

n−1
2 ⌋+1 − 3

⌊
n− 1

2

⌋
− 4) =

{
1
18 (2

n+1 − 3n− 2), if n even;
1
18 (2

n+2 − 3n− 5), otherwise.
(3.33)

f ij
n (a) =

2

9
(4⌊

n−2
2 ⌋+1 − 3

⌊
n− 2

2

⌋
− 4) =

{
1
9 (2

n+1 − 3n− 2), if n even;
1
9 (2

n − 3n+ 1), otherwise.
(3.34)

f ij
n (b) =

1

18
(4⌊

n+2
2 ⌋ + 6

⌊
n+ 2

2

⌋
− 10) =

{
1
18 (2

n+2 + 3n− 4), if n even;
1
18 (2

n+1 + 3n− 7), otherwise.
(3.35)

f ij
n (c) =

1

18
(4⌊

n+2
2 ⌋ + 6

⌊
n+ 2

2

⌋
− 10) =

{
1
18 (2

n+2 + 3n− 4), if n even;
1
18 (2

n+1 + 3n− 7), otherwise.
(3.36)

Depending on the parity of the number of discs n, we can now find which movement
among the six elementary movements is the most frequent in the optimal sequence of move-
ments, as the following proposition presents.

Proposition 3. For all integers n ≥ 0, we have

f ij
n (c) = f ij

n (b) ≥ f ij
n (a) ≥ f ij

n (a) ≥ f ij
n (b) = f ij

n (c), if n ≥ 6 even.

f ij
n (a) ≥ f ij

n (b) = f ij
n (c) ≥ f ij

n (c) = f ij
n (b) ≥ f ij

n (a), if n ≥ 0 odd.

This last proposition can be proved by induction on the number of discs n. We deduce
from this proposition that the counter-clockwise moves a, b, and c are more than clockwise
moves a, b, and c when n is even and vice versa when n is odd.

Now we present the relation between the number of the three clockwise (resp., counter-
clockwise) moves a, b, and c (resp., a, b, and c), as well as the relation between the number
of moves from the source peg i to destination peg j which are moves of type a and the
moves in the opposite direction which are moves of type a.

Proposition 4. For all integers n ≥ 0, we have

f ij
n (a) = f ij

n (b) +

⌊
n+ 1

2

⌋
= f ij

n (c) +

⌊
n+ 1

2

⌋
,

f ij
n (a) = f ij

n (c)−
⌊n
2

⌋
= f ij

n (b)−
⌊n
2

⌋
,

f ij
n (a)− f ij

n (a) =
1

9
((−1)n+12n + 6n+ 1).

Here is another recurrence relation of f ij
n (x) which relates f ij

n (x) with f ij
n−2(x).
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Theorem 5. For all integers n ≥ 2, x ∈ A, f ij
n (x) satisfies the following recurrence relation

f ij
n (x) = 4f ij

n−2(x) + (3− 2

⌊
n+ 1

2

⌋
)[x ∈ {a}] +

⌊
n− 1

2

⌋
[x ∈ {b, c}]

+ 2

⌊
n− 2

2

⌋
[x ∈ {a}] + (2−

⌊n
2

⌋
)[x ∈ {b, c}].

(3.37)

Proof. Using identities (3.24) and (2.1), we obtain

f ij
n (x) = (φn − 3φn−2)[x ∈ {a}] + φn−2[x ∈ {b, c}] + 2φn−3[x ∈ {a}]

+ (φn−1 − 2φn−3)[x ∈ {b, c}]

= (4φn−2 +

⌊
n+ 1

2

⌋
− 12φn−4 − 3

⌊
n− 1

2

⌋
)[x ∈ {a}]

+ (4φn−4 +

⌊
n− 1

2

⌋
)[x ∈ {b, c}] + 2(4φn−5 +

⌊
n− 2

2

⌋
)[x ∈ {a}]

+ (4φn−3 +
⌊n
2

⌋
− 8φn−5 − 2

⌊
n− 2

2

⌋
)[x ∈ {b, c}]

= 4f ij
n−2(x) + (

⌊
n+ 1

2

⌋
− 3

⌊
n− 1

2

⌋
)[x ∈ {a}] +

⌊
n− 1

2

⌋
[x ∈ {b, c}]

+ 2

⌊
n− 2

2

⌋
[x ∈ {a}] + (

⌊n
2

⌋
− 2

⌊
n− 2

2

⌋
)[x ∈ {b, c}]

= 4f ij
n−2(x) + (3− 2

⌊
n+ 1

2

⌋
)[x ∈ {a}] +

⌊
n− 1

2

⌋
[x ∈ {b, c}] + 2

⌊
n− 2

2

⌋
[x ∈ {a}]

+ (2−
⌊n
2

⌋
)[x ∈ {b, c}].

Corollary 11. For all integers n ≥ 2, we have

f ij
n (a) = 4f ij

n−2(a) + 3− 2

⌊
n+ 1

2

⌋
, f ij

0 (a) = 0, f ij
1 (a) = 1. (3.38)

f ij
n (b) = 4f ij

n−2(b) +

⌊
n− 1

2

⌋
, f ij

0 (b) = f ij
1 (b) = 0. (3.39)

f ij
n (c) = 4f ij

n−2(c) +

⌊
n− 1

2

⌋
, f ij

0 (c) = f ij
1 (c) = 0. (3.40)

f ij
n (a) = 4f ij

n−2(a) + 2

⌊
n− 2

2

⌋
, f ij

0 (a) = f ij
1 (a) = 0. (3.41)

f ij
n (b) = 4f ij

n−2(b) + 2−
⌊n
2

⌋
, f ij

0 (b) = f ij
1 (b) = 0. (3.42)

f ij
n (c) = 4f ij

n−2(c) + 2−
⌊n
2

⌋
, f ij

0 (c) = f ij
1 (c) = 0. (3.43)
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Property 2. For all integers n ≥ 1, we have for

f ij
2n(a) = f ij

2n−1(a),

f ij
2n(b) = f ij

2n−1(b),

f ij
2n(c) = f ij

2n−1(c).

And for all integers n ≥ 0

f ij
2n(a) = f ij

2n+1(a),

f ij
2n(b) = f ij

2n+1(b),

f ij
2n(c) = f ij

2n+1(c).

We present now the relation between sequences f ij
n (a), f ij

n (b), f ij
n (c), f ij

n (a), f ij
n (b), f ij

n (c)
and some OEIS sequences.

Remark 2.
f ij
2n(a) = f ij

2n−1(a) = A073724(n), n ≥ 1.

f ij
2n(b) = f ij

2n−1(b) = A014825(n− 1), n ≥ 2.

f ij
2n(c) = f ij

2n−1(c) = A014825(n− 1), n ≥ 2.

f ij
2n(a) = f ij

2n+1(a) = A145766(n− 1), n ≥ 1.

f ij
2n(b) = f ij

2n+1(b) = A160156(n− 1), n ≥ 1.

f ij
2n(c) = f ij

2n+1(c) = A160156(n− 1), n ≥ 1.

4 Counting the number of each elementary move that
each disc makes

In this section, we extend our work to calculate not only the number of each elementary
move in the optimal sequence of moves but also the number of times that each disc d ∈ D =
{1, . . . , n} makes the elementary move x ∈ A during the execution of the optimal solution.

We define the recursive function

gijn :

{
D ×A → N;
(d, x) 7→ gijn (d, x),

where d ∈ D = {1, . . . , n} is a disc, x ∈ A = {a, b, c, a, b, c} is an elementary move, and
gijn (d, x) counts the number of times that disc dmakes the elementary move x in the sequence
of optimal moves to solve the Tower of Hanoi, where the goal is to transfer a tower of n
discs from peg i to peg j using peg k as an auxiliary peg.



H. Belbachir, E.-M. Mehiri 143

Proposition 5. For all integers n ≥ 0, d ∈ D, x ∈ A, we have∑
x∈A

gijn (d, x) = 2n−d. (4.1)

∑
d∈D

gijn (d, x) = f ij
n (x). (4.2)

gijn (n, x) = [x ∈ {a}]. (4.3)

Consider the optimal sequence of moves for n = 6, see Table 1. The following table
shows the number of times that each disc makes each one of the six elementary moves in
the optimal sequence of moves above where n = 6.

d gijn (d, a) gijn (d, b) gijn (d, c) gijn (d, a) gijn (d, b) gijn (d, c)
∑
x∈A

gijn (d, x)

1 0 0 0 10 11 11 26−1

2 6 5 5 0 0 0 26−2

3 0 0 0 2 3 3 26−3

4 2 1 1 0 0 0 26−4

5 0 0 0 0 1 1 26−5

6 1 0 0 0 0 0 26−6∑
d∈D

gijn (d, x) f ij
6 (a) f ij

6 (b) f ij
6 (c) f ij

6 (a) f ij
6 (b) f ij

6 (c) 26 − 1

Table 3: The number of each elementary move that each disc makes during the optimal
solution for n = 6.

We present in the following theorem a recurrence relation of gijn (d, x) where the recursion
is on the number of discs n.

Theorem 6. For all integers n ≥ 4, d ∈ D, x ∈ A, we have gijn (d, x) satisfies the following
recurrence relation

gijn (d, x) = 5gijn−2(d, x)− 4gijn−4(d, x) + [x ∈ {a}][d = n] + [x ∈ {c, b}][d = n− 1]

+ ([x ∈ {b, c}]− 3[x ∈ {a}])[d = n− 2]− 2([x ∈ {c, b}]
− [x ∈ {a}])[d = n− 3],

(4.4)

where gij0 (d, x) = 0, gij1 (d, x) = [x ∈ {a}][d = 1], gij2 (d, x) = [x ∈ {a}][d = 2] + [x ∈
{c, b}][d = 1], and gij3 (d, x) = [x ∈ {a}][d = 3] + [x ∈ {c, b}][d = 2] + ([x ∈ {b, c}] + 2[x ∈
{a}])[d = 1].

Proof. We have
Sij
n = Sik

n−1[i → j]Skj
n−1,

then we obtain

gijn (d, x) = gikn−1(d, x) + [x ∈ {a}][d = n] + gkjn−1(d, x)

= gijn−2(d, x) + [x ∈ {c}][d = n− 1] + gjkn−2(d, x) + [x ∈ {a}][d = n] + gkin−2(d, x)

+ [x ∈ {b}][d = n− 1] + gijn−2(d, x)

= 2gijn−2(d, x) + gjin−1(d, x) + [x ∈ {a}][d = n] + ([x ∈ {c, b}]− [x ∈ {a}])[d = n− 1].
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Which implies that

gjin−1(d, x) = gijn (d, x)− 2gijn−2(d, x)− [x ∈ {a}][d = n]− ([x ∈ {c, b}]
+ [x ∈ {a}])[d = n− 1].

(4.5)

Then, we have

gjin (d, x) = gijn+1(d, x)− 2gijn−1(d, x)− [x ∈ {a}][d = n+ 1]− ([x ∈ {c, b}]
+ [x ∈ {a}])[d = n− 1],

(4.6)

and

gjin−2(d, x) = gijn−1(d, x)− 2gijn−3(d, x)− [x ∈ {a}][d = n− 1]− ([x ∈ {c, b}]
+ [x ∈ {a}])[d = n− 1].

(4.7)

On the other hand we have

gjin (d, x) = 2gjin−2(d, x) + gijn−1(d, x) + [x ∈ {a}][d = n] + ([x ∈ {b, c}]
− [x ∈ {a}])[d = n− 1].

(4.8)

By replacing (4.6) and (4.7) in (4.8), we obtain

gijn+1(d, x) = 5gijn−1(d, x)− 4gijn−3(d, x) + [x ∈ {a}][d = n+ 1] + [x ∈ {c, b}][d = n]

+ ([x ∈ {b, c}]− 3[x ∈ {a}])[d = n− 1]− 2([x ∈ {c, b}]
− [x ∈ {a}])[d = n− 2].

(4.9)

Hence, the result.

Theorem 7. For all d ∈ D, and x ∈ A, let Hij(z, d, x) =
∑
n≥0

gijn (d, x)zn be the ordinary

generating function of the sequence gijn (d, x), then we have

Hij(z, d, x) =

[x ∈ {a}]zd + [x ∈ {c, b}]zd+1 + ([x ∈ {b, c}]− 3[x ∈ {a}])zd+2

+ 2([x ∈ {a}]− [x ∈ {c, b}])zd+3

(1− 4z2)(1− z2)
. (4.10)

Proof. Using the same technique as in the proof of Theorem 3.

We present now the relation between gijn (d, x) and the sequence of the second section
φn.

Theorem 8. For all integers n ≥ 0, d ∈ D, x ∈ A, we have

gijn (d, x) = [x ∈ {a}]φn−d+1 + ([x ∈ {c, b}]− [x ∈ {a}])φn−d + ([x ∈ {b, c}]
− 3[x ∈ {a}]− [x ∈ {c, b}])φn−d−1 + (2[x ∈ {a}]− 2[x ∈ {c, b}]
− [x ∈ {b, c}] + 3[x ∈ {a}])φn−d−2 − 2([x ∈ {a}]− [x ∈ {c, b}])φn−d−3.

(4.11)
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Proof. Using the generating function Hij(t, d, x) and some elementary calculations.

Here we have another recurrence relation of gijn (d, x) where the recursion is on d, the
disc whose moves we wish to count.

Proposition 6. For all integers n ≥ 1, d ∈ D \ {1}, x ∈ A we have

gijn (d, x) = gijn−1(d− 1, x), (4.12)

where gijn (1, x) is calculated using identity (4.11).

Proof. The proof comes from the fact that the label of a disc d is related to the value of
the number of discs n in the tower to be transferred. When the size of the tower to be
transferred is reduced by one, the label of disc d is also reduced by one, by convention that
if the label becomes less than 1 we eliminate the disc. Then calculating gijn (d, x) which is
the number of times disc d makes move x in a tower of n discs in the optimal sequence
of moves that transfers the tower from peg i to j, the same as calculating gijn−1(d − 1, x)
because disc d− 1 in the sub-tower of the last n− 1 acts the same as disc d in the tower n.

The proposition can also be proved by induction on the value of d.

This last result allows us to identify triangles for the sequence gijn (d, x) where the move
x is fixed, we present here an example.

n
d 1 2 3 4 5 6 7 8 9 10 · · ·

1 1
2 0 1
3 2 0 1
4 0 2 0 1
5 6 0 2 0 1
6 0 6 0 2 0 1
7 22 0 6 0 2 0 1
8 0 22 0 6 0 2 0 1
9 86 0 22 0 6 0 2 0 1
10 0 86 0 22 0 6 0 2 0 1
...

...
...

...
...

...
...

...
...

...
...

. . .

Table 4: The triangle of gijn (d, a).

Proposition 7. For all integers n ≥ 0, d ∈ D, we have

gijn (d, a) = gijn (d, b) = gijn (d, c) = 0, (n− d) even.

gijn (d, a) = gijn (d, b) = gijn (d, c) = 0, (n− d) odd.

Proof. Using identity (4.11) and Property 1.
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The interpretation of this proposition is that the clockwise (resp., counter-clockwise)
moves a, b, and c (resp., a, b, and c) are null when the difference between n and d is an
even (resp., odd) number.

Similarly to Proposition 1, we find that in the optimal solution, the number of times
disc d is moved from the destination (resp., source) peg j (resp., i) to the auxiliary peg k is
equal to the number of times we move discs from the auxiliary peg k to the source (resp.,
destination) peg i (resp., j). i.e.,

Proposition 8. for all integers n ≥ 0, d ∈ D we have

gijn (d, b) = gijn (d, c),

gijn (d, b) = gijn (d, c).

Proof. By replacing x with b, c, b, and c in identity (4.11).

As a direct consequence of Theorem 8 we have the following result which presents the
relation between the number of times disc d makes move x ∈ A in the optimal solution
i.e., the six sequences gijn (d, a), gijn (d, b), gijn (d, c), gijn (d, a), gijn (d, b), and gijn (d, c) with the
sequence φn.

Corollary 12. For all integers n ≥ 0, d ∈ D we have

gijn (d, a) = φn−d+1 − φn−d − 3φn−d−1 + 3φn−d−2, (4.13)

gijn (d, b) =gijn (d, c) = φn−d−1 − φn−d−2, (4.14)

gijn (d, a) = 2φn−d−2 − 2φn−d−3, (4.15)

gijn (d, b) =gijn (d, c) = φn−d − φn−d−1 − 2φn−d−2 + 2φn−d−3. (4.16)

We present now explicit formulas for each of the sequences gijn (d, a), gijn (d, b), gijn (d, c),
gijn (d, a), gijn (d, b), and gijn (d, c).

Corollary 13. For all integers n ≥ 0, d ∈ D, we have

gijn (d, a) =

{
1
3 (2

n−d + 2), (n− d) even;

0, otherwise.
(4.17)

gijn (d, b) =gijn (d, c) =

{
1
3 (2

n−d − 1), (n− d) even;

0, otherwise.
(4.18)

gijn (d, a) =

{
0, (n− d) even;
1
3 (2

n−d − 2), otherwise.
(4.19)

gijn (d, b) =gijn (d, c) =

{
0, (n− d) even;
1
3 (2

n−d + 1), otherwise.
(4.20)

Proof. Using Corollaries 12 and 3, and Proposition 7.
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We finish this section by presenting the relationship between sequences gijn (d, a), gijn (d, b),
gijn (d, c), gijn (d, a), gijn (d, b), and gijn (d, c) with some OEIS sequences, due to Proposition 6
we can fix d = 1.

Remark 3. For all integers n ≥ 0, we have

gij2n+1(1, a) = A047849(n),

gij2n+1(1, b) = A002450(n),

gij2n+1(1, c) = A002450(n),

gij2n+2(1, a) = A020988(n),

gij2n+2(1, b) = A007583(n),

gij2n+2(1, c) = A007583(n).

5 Conclusion

The Tower of Hanoi puzzle still fascinates us by its richness of mathematical properties.
However, there is a lot to be discovered around this puzzle. The goal of this work was to find
a way to calculate the number of each elementary move in the optimal sequence of moves,
as well as find the number of times a specified disc makes each elementary move. These
goals were achieved by developing the functions f ij

n (x) and gijn (d, x) using the properties of
the sequence φn. Many properties and combinatorial identities relating φn with f ij

n (x) and
gijn (d, x) were presented. We also found combinatorial interpretations for some sequences
that do not have a combinatorial interpretation yet in the On-Line Encyclopedia of Integer
Sequences [14] using f ij

n (x) and gijn (d, x).
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