Bull. Math. Soc. Sci. Math. Roumanie Tome 68 (116), No. 2, 2025, 173–184

On the nonexistence of harmonic and bi-harmonic maps by AHMED MOHAMMED CHERIF

Abstract

In this paper, we study the existence of harmonic and bi-harmonic maps into Riemannian manifolds admitting a conformal vector field, or a nontrivial Ricci solitons.

Key Words: Harmonic maps, bi-harmonic maps, Ricci solitons, conformal vector fields.

2020 Mathematics Subject Classification: 53C25, 53C43, 58E20.

1 Preliminaries and notations

We give some definitions. (1) Let (M, g) be a Riemannian manifold. By \mathbb{R}^M and Ric^M we denote respectively the Riemannian curvature tensor and the Ricci curvature of (M, g). Thus \mathbb{R}^M and Ric^M are defined by

$$R^{M}(X,Y)Z = \nabla^{M}_{X}\nabla^{M}_{Y}Z - \nabla^{M}_{Y}\nabla^{M}_{X}Z - \nabla^{M}_{[X,Y]}Z, \qquad (1.1)$$

$$\operatorname{Ric}^{M}(X,Y) = \sum_{i=1}^{m} g(R^{M}(X,e_{i})e_{i},Y), \qquad (1.2)$$

where ∇^M is the Levi-Civita connection with respect to g, $\{e_i\}_{i=1}^m$ is a local orthonormal frame field on (M, g), and $X, Y, Z \in \Gamma(TM)$. The divergence of (0, p)-tensor α on (M, g) is defined by

$$(\operatorname{div}^{M} \alpha)(X_{1}, ..., X_{p-1}) = \sum_{i=1}^{m} (\nabla_{e_{i}} \alpha)(e_{i}, X_{1}, ..., X_{p-1}),$$
(1.3)

where $X_1, ..., X_{p-1} \in \Gamma(TM)$, and $\nabla_{e_i} \alpha$ is the covariant derivative of α relative to e_i . Given a smooth function f on M, the gradient of f is defined by

$$g(\operatorname{grad}^{M} f, X) = X(f), \tag{1.4}$$

the Hessian of f is defined by

$$(\operatorname{Hess}^{M} f)(X, Y) = g(\nabla_{X}^{M} \operatorname{grad}^{M} f, Y), \qquad (1.5)$$

where $X, Y \in \Gamma(TM)$ (for more details, see for example [14]).

(2) A vector field ξ on a Riemannian manifold (M, g) is called a conformal if $\mathcal{L}_{\xi}g = 2fg$, for some smooth function f on M, where $\mathcal{L}_{\xi}g$ is the Lie derivative of the metric g with respect to ξ , that is

$$g(\nabla_X^M \xi, Y) + g(\nabla_Y^M \xi, X) = 2fg(X, Y), \quad \forall X, Y \in \Gamma(TM).$$
(1.6)

The function $f = (\operatorname{div}^M \xi)/m$ is then called the potential function of the conformal vector field ξ . If ξ is conformal with constant potential function f, then it is called homothetic, while f = 0 it is Killing (see [1], [11], [18]).

(3) A Ricci soliton structure on a Riemannian manifold (M,g) is the choice of a smooth vector field ξ satisfying the soliton equation

$$\operatorname{Ric}^{M} + \frac{1}{2}\mathcal{L}_{\xi}g = \lambda g, \qquad (1.7)$$

for some constant $\lambda \in \mathbb{R}$. The Ricci soliton (M, g, ξ, λ) is said to be shrinking, steady or expansive according to whether the coefficient λ appearing in equation (1.7) satisfies $\lambda > 0$, $\lambda = 0$ or $\lambda < 0$. In the special case where $\xi = \operatorname{grad}^M f$, for some smooth function f on M, we say that $(M, g, \operatorname{grad}^M f, \lambda)$ is a gradient Ricci soliton with potential f. In this situation, the soliton equation reads

$$\operatorname{Ric}^{M} + \operatorname{Hess}^{M} f = \lambda g, \tag{1.8}$$

(see [8], [9], [16]). If $\xi = 0$, we recover the definition of an Einstein metric with Einstein constant λ . If (M, g) is not Einstein, we call the soliton nontrivial.

(4) A vector field ξ on a Riemannian manifold (M, g) is said to be a Jacobi-type vector field if it satisfies $\nabla^{M}\nabla^{M}\xi = \nabla^{M} = \xi + B^{M}(\xi, \mathbf{Y})\mathbf{Y} = 0 \quad \forall \mathbf{Y} \in \Gamma(TM)$ (1.0)

$$\nabla^M_X \nabla^M_X \xi - \nabla^M_{\nabla^M_X X} \xi + R^M(\xi, X) X = 0, \quad \forall X \in \Gamma(TM).$$
(1.9)

Note that, there are Jacobi-type vector fields on a Riemannian manifold which are not Killing vector fields (see [5]). Note that, a homothetic vector field on a Riemannian manifold is a Jacobi-type vector field (see [13]).

(5) Let $\varphi : (M,g) \longrightarrow (N,h)$ be a smooth map between two Riemannian manifolds, $\tau(\varphi)$ the tension field of φ given by

$$\tau(\varphi) = \operatorname{trace}_{g} \nabla d\varphi = \sum_{i=1}^{m} \left[\nabla_{e_{i}}^{\varphi} d\varphi(e_{i}) - d\varphi(\nabla_{e_{i}}^{M} e_{i}) \right],$$
(1.10)

where ∇^M is the Levi-Civita connection of (M, g), ∇^{φ} denote the pull-back connection on $\varphi^{-1}TN$ and $\{e_i\}_{i=1}^m$ is a local orthonormal frame field on (M, g). Then φ is called harmonic if the tension field vanishes, i.e., $\tau(\varphi) = 0$ (see [1], [3], [7], [17]). We define the index form for harmonic maps by (see [4], [15])

$$I(v,w) = \int_{M} h(J_{\varphi}(v), w)v^{g}, \quad \forall v, w \in \Gamma(\varphi^{-1}TN),$$
(1.11)

(or over any compact subset $D \subset M$), where

$$J_{\varphi}(v) = -\operatorname{trace}_{g} R^{N}(v, d\varphi) d\varphi - \operatorname{trace}_{g} (\nabla^{\varphi})^{2} v$$

$$= -\sum_{i=1}^{m} R^{N}(v, d\varphi(e_{i})) d\varphi(e_{i}) - \sum_{i=1}^{m} \left[\nabla^{\varphi}_{e_{i}} \nabla^{\varphi}_{e_{i}} v - \nabla^{\varphi}_{\nabla^{M}_{e_{i}} e_{i}} v \right], \qquad (1.12)$$

 \mathbb{R}^N is the curvature tensor of (N, h), ∇^N is the Levi-Civita connection of (N, h), and v^g is the volume form of (M, g) (see [1]). If $\tau_2(\varphi) \equiv J_{\varphi}(\tau(\varphi))$ is null on M, then φ is called a bi-harmonic map (see [3], [10], [12]).

2 Main results

2.1 Harmonic maps and conformal vector fields

Proposition 1. Let (M, g) be a compact orientable Riemannian manifold without boundary, and (N, h) a Riemannian manifold admitting a conformal vector field ξ with potential function f > 0 at any point. Then, any harmonic map φ from (M, g) to (N, h) is constant.

Proof. Let $X \in \Gamma(TM)$, we set

$$\omega(X) = h(\xi \circ \varphi, d\varphi(X)). \tag{2.1}$$

Let $\{e_i\}_{i=1}^m$ be a geodesic frame field around $x \in M$. At x we have

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} e_{i} \big[h \big(\xi \circ \varphi, d\varphi(e_{i}) \big) \big], \qquad (2.2)$$

by equation (2.2), and the harmonicity condition of φ , we get

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} h \big(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), d\varphi(e_{i}) \big), \qquad (2.3)$$

since ξ is a conformal vector field, we find that

$$\operatorname{div}^{M} \omega = (f \circ \varphi) \sum_{i=1}^{m} h(d\varphi(e_{i}), d\varphi(e_{i})) = (f \circ \varphi) |d\varphi|^{2}.$$
(2.4)

The Proposition 1 follows from equation (2.4), and the divergence theorem (see [1]), with f > 0 on N.

Remark 1. (1) Proposition 1 remains true if the potential function f < 0 on N (consider the conformal vector field $\bar{\xi} = -\xi$).

(2) If the potential function is non-zero constant, that is $\mathcal{L}_{\xi}h = 2kh$ on (N,h) with $k \neq 0$, then any harmonic map φ from a compact orientable Riemannian manifold without boundary (M,g) to (N,h) is necessarily constant (see [13]).

(3) An harmonic map from a compact orientable Riemannian manifold without boundary to a Riemannian manifold admitting a Killing vector field is not necessarily constant (for example the identity map on the unit (2n + 1)-dimensional sphere on \mathbb{R}^{2n+2} , note that the unit odd-dimensional sphere admits a Killing vector field (see [2]).

From Proposition 1, we get the following result.

Corollary 1. Let $(\overline{N}, \overline{h})$ be an n-dimensional Riemannian manifold which admits a Killing vector field $\overline{\xi}$. Consider (N, h) a Riemannian hypersurface of $(\overline{N}, \overline{h})$ such that h is the induced metric of \overline{h} on N. Suppose that

• (N,h) is totally umbilical, that is

$$B(X,Y) = \rho h(X,Y)\eta, \quad \forall X,Y \in \Gamma(TN),$$

for some smooth function ρ on N, where B is the second fundamental form of N on \overline{N} given by $B(X,Y) = (\overline{\nabla}_X Y)^{\perp}$, $\overline{\nabla}$ is the Levi-Civita connection on \overline{N} , and η is the unit normal to N;

• the function $\overline{h}(\overline{\xi}, H) \neq 0$ everywhere on N, where H is the mean curvature of (N, h) given by the formula

$$H = \frac{1}{n-1} \operatorname{trace}_h B$$

Then, any harmonic map from a compact orientable Riemannian manifold without boundary to (N,h) is constant.

Proof. It is possible to express $\overline{\xi}$ along N as $\overline{\xi} = \xi + f\eta$, where ξ is tangent to N and f is a smooth function on N. Thus we have

$$(\mathcal{L}_{\overline{\xi}}\overline{h})(X,Y) = (\mathcal{L}_{\xi}h)(X,Y) + f\{\overline{h}(\overline{\nabla}_X\eta,Y) + \overline{h}(\overline{\nabla}_Y\eta,X)\},$$
(2.5)

where $X, Y \in \Gamma(TN)$ (see [6]), by equation (2.5) with $\mathcal{L}_{\overline{\xi}}\overline{h} = 0$, we get

$$(\mathcal{L}_{\xi}h)(X,Y) = 2f\overline{h}(\eta, B(X,Y)).$$
(2.6)

Since (N, h) is totally umbilical, (2.6) becomes

$$(\mathcal{L}_{\xi}h)(X,Y) = 2f\rho h(X,Y).$$
(2.7)

The Corollary follows from Proposition 1 and equation (2.7) with

$$f\rho = \overline{h}(\overline{\xi},\eta)\overline{h}(H,\eta) = \overline{h}(\overline{\xi},H).$$

Example 1. Let $\overline{N} = \mathbb{R}^n$ equipped with the standard Riemannian metric $\overline{h} = \langle, \rangle_{\mathbb{R}^n}$. We consider the hypersurface $N = \mathbb{S}^{n-1} \cap \{y \in \mathbb{R}^n, y_n > 0\}$ in \overline{N} , where \mathbb{S}^{n-1} is the unit (n-1)-dimensional sphere on \mathbb{R}^n . Let h the induced Riemannian metric on N. It is easy to show that (N,h) is totally umbilical, with B(X,Y) = -h(X,Y)P for all $X,Y \in \Gamma(TN)$, where P is the position vector field of \mathbb{R}^n (see [14]). Here, $\rho = 1$ and $\eta = -P$ along N. We have the following

$$\overline{h}(\frac{\partial}{\partial y_n},H) = -y_n \neq 0,$$

everywhere on N. Since $\overline{\xi} = \partial/\partial y_n$ is a Killing vector field on $(\overline{N}, \overline{h})$, according to Corollary 1, any harmonic map from a compact orientable Riemannian manifold without boundary to an open hemisphere is constant. Here, the tangent vector field ξ is given by

$$\begin{split} \xi &= \overline{\xi} - f\eta \\ &= \frac{\partial}{\partial y_n} - \langle \frac{\partial}{\partial y_n}, P \rangle_{\mathbb{R}^n} P \\ &= \frac{\partial}{\partial y_n} - y_n \sum_{i=1}^n y_i \frac{\partial}{\partial y_i}. \end{split}$$

176

A. Mohammed Cherif

Note that, the hypersurface (N, h) can be parameterized by

$$(u_1, ..., u_{n-1}) \longmapsto \left(u_1, ..., u_{n-1}, \sqrt{1 - u_1^2 - ... - u_{n-1}^2}\right).$$

By using this parameterization and the last equation, we find that

$$\xi = -\sqrt{1 - u_1^2 - \dots - u_{n-1}^2} \sum_{i=1}^{n-1} u_i \frac{\partial}{\partial u_i}.$$

Thus, from equation (2.7), ξ is conformal vector field on (N, h) with potential function

$$f = -\sqrt{1 - u_1^2 - \dots - u_{n-1}^2}.$$

In the case of non-compact Riemannian manifold, we obtain the following results.

Theorem 1. Let (M, g) be a complete non-compact Riemannian manifold, and (N, h) a Riemannian manifold admitting a conformal vector field ξ with potential function f > 0 at any point. If $\varphi : (M, g) \longrightarrow (N, h)$ is harmonic map, satisfying

$$\int_{M} \frac{|\xi \circ \varphi|^2}{f \circ \varphi} v^g < \infty, \tag{2.8}$$

then φ is constant.

Proof. Let ρ be a smooth function with compact support on M, we set

$$\omega(X) = h(\xi \circ \varphi, \rho^2 d\varphi(X)), \quad X \in \Gamma(TM).$$
(2.9)

Let $\{e_i\}_{i=1}^m$ be a geodesic frame field around $x \in M$. At x we have

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} e_{i} \left[h \left(\xi \circ \varphi, \rho^{2} d\varphi(e_{i}) \right) \right],$$
(2.10)

by equation (2.10), and the harmonicity condition of φ , we get

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} \left[h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} d\varphi(e_{i}) \right) + h \left(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} \rho^{2} d\varphi(e_{i}) \right) \right] \\ = \sum_{i=1}^{m} \left[\rho^{2} h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), d\varphi(e_{i}) \right) + 2\rho e_{i}(\rho) h \left(\xi \circ \varphi, d\varphi(e_{i}) \right) \right], \quad (2.11)$$

since ξ is a conformal vector field with potential function f, we find that

$$\rho^2 \sum_{i=1}^m h\left(\nabla_{e_i}^{\varphi}(\xi \circ \varphi), d\varphi(e_i)\right) = (f \circ \varphi)\rho^2 \sum_{i=1}^m h\left(d\varphi(e_i), d\varphi(e_i)\right), \tag{2.12}$$

by Young's inequality we have

$$-2\rho \sum_{i=1}^{m} e_i(\rho) h\big(\xi \circ \varphi, d\varphi(e_i)\big) \le \lambda \rho^2 |d\varphi|^2 + \frac{1}{\lambda} |\operatorname{grad}^M \rho|^2 |\xi \circ \varphi|^2,$$
(2.13)

for all function $\lambda > 0$ on M, because of the inequality

$$\sum_{i=1}^{m} |\sqrt{\lambda}\rho d\varphi(e_i) + \frac{1}{\sqrt{\lambda}} e_i(\rho)(\xi \circ \varphi)|^2 \ge 0.$$

From (2.11), (2.12) and (2.13) we deduce the inequality

$$(f \circ \varphi)\rho^2 |d\varphi|^2 - \operatorname{div}^M \omega \le \lambda \rho^2 |d\varphi|^2 + \frac{1}{\lambda} |\operatorname{grad}^M \rho|^2 |\xi \circ \varphi|^2.$$
(2.14)

Take $\lambda = (f \circ \varphi)/2$, from (2.14) we have

$$\frac{1}{2}(f\circ\varphi)\rho^2|d\varphi|^2 - \operatorname{div}^M \omega \le \frac{2}{f\circ\varphi}|\operatorname{grad}^M \rho|^2|\xi\circ\varphi|^2,$$
(2.15)

by using the divergence theorem and inequality (2.15), we find that

$$\frac{1}{2} \int_{M} (f \circ \varphi) \rho^2 |d\varphi|^2 v^g \le 2 \int_{M} |\operatorname{grad}^M \rho|^2 \frac{|\xi \circ \varphi|^2}{f \circ \varphi} v^g.$$
(2.16)

Consider the smooth function $\rho = \rho_R$ such that, $\rho \leq 1$ on M, $\rho = 1$ on the ball B(p, R), $\rho = 0$ on $M \setminus B(p, 2R)$ and $|\operatorname{grad}^M \rho| \leq \frac{2}{R}$ (see [19]). From (2.16), we get

$$\frac{1}{2} \int_{M} (f \circ \varphi) \rho^2 |d\varphi|^2 v^g \le \frac{8}{R^2} \int_{M} \frac{|\xi \circ \varphi|^2}{f \circ \varphi} v^g, \tag{2.17}$$

since $\int_M \frac{|\xi \circ \varphi|^2}{f \circ \varphi} v^g < \infty$, when $R \to \infty$, we obtain

$$\int_{M} (f \circ \varphi) |d\varphi|^2 v^g = 0.$$
(2.18)

Consequently, $|d\varphi| = 0$, that is φ is constant.

From Theorem 1, we get the following.

Corollary 2. Let (M,g) be a complete non-compact Riemannian manifold and let ξ a conformal vector field on (M,g) with potential function f > 0 at any point. Then

$$\int_M \frac{|\xi|^2}{f} v^g = \infty.$$

2.2 Bi-harmonic maps and conformal vector fields

Theorem 2. Let (M,g) be a compact orientable Riemannian manifold without boundary, and let ξ a conformal vector field with non-constant potential function f on a Riemannian manifold (N,h) such that $\operatorname{grad}^N f$ is parallel. Then, any bi-harmonic map φ from (M,g)to (N,h) is constant.

For the proof of Theorem 2, we need the following Lemma.

Lemma 1. [13] Let (M, g) be a compact orientable Riemannian manifold without boundary and (N, h) a Riemannian manifold admitting a proper homothetic vector field ζ , i.e., $\mathcal{L}_{\zeta}h = 2kh$ with $k \in \mathbb{R}^*$. Then, any bi-harmonic map φ from (M, g) to (N, h) is constant.

Proof of Theorem 2. We set $\zeta = [\operatorname{grad}^N f, \xi]$, since $\operatorname{grad}^N f$ is parallel on (N, h), then ζ is an homothetic vector field satisfying $\nabla_U^N \zeta = |\operatorname{grad}^N f|^2 U$ for any $U \in \Gamma(TN)$ (see [11]). The Theorem 2 follows from Lemma 1.

From Theorem 2, we deduce:

Corollary 3. Let (M, g) be a compact orientable Riemannian manifold without boundary, and let ξ a conformal vector field with non-constant potential function f on (M, g). Then, grad f is not parallel.

2.3 Harmonic maps to Ricci solitons

Proposition 2. Let (M, g) be a compact orientable Riemannian manifold without boundary, and (N, h, ξ, λ) a nontrivial Ricci soliton with

$$\operatorname{Ric}^N > \lambda h$$
 or $\operatorname{Ric}^N < \lambda h$.

Then any harmonic map φ from (M, g) to (N, h) is constant.

Proof. Let $X \in \Gamma(TM)$, we set

$$\omega(X) = h(\xi \circ \varphi, d\varphi(X)). \tag{2.19}$$

Let $\{e_i\}_{i=1}^m$ be a geodesic frame field around $x \in M$. At x we have

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} e_{i} \big[h\big(\xi \circ \varphi, d\varphi(e_{i}) \big) \big], \qquad (2.20)$$

by equation (2.20), and the harmonicity condition of φ , we get

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), d\varphi(e_{i}) \right) = \frac{1}{2} \sum_{i=1}^{m} (\mathcal{L}_{\xi} h) (d\varphi(e_{i}), d\varphi(e_{i})), \quad (2.21)$$

from the soliton equation, we find that

$$\operatorname{div}^{M} \omega = \lambda \sum_{i=1}^{m} h(d\varphi(e_{i}), d\varphi(e_{i})) - \sum_{i=1}^{m} \operatorname{Ric}^{N}(d\varphi(e_{i}), d\varphi(e_{i})).$$
(2.22)

The Proposition 2 follows from equation (2.22), and the divergence theorem.

Remark 2. The condition $\operatorname{Ric}^{N} > \lambda h$ (resp. $\operatorname{Ric}^{N} < \lambda h$) is equivalent to $\operatorname{Ric}^{N}(v, v) > \lambda h(v, v)$ (resp. $\operatorname{Ric}^{N}(v, v) < \lambda h(v, v)$), for any $v \in T_{p}N - \{0\}$, where $p \in N$.

It is known that the cigar soliton

$$(\mathbb{R}^2, \frac{dx^2 + dy^2}{1 + x^2 + y^2}),$$

is steady with strictly positive Ricci tensor (see [8]). According to Proposition 2, we have the following

Corollary 4. Any harmonic map φ from a compact orientable Riemannian manifold without boundary to the cigar soliton is constant.

In the case of non-compact Riemannian manifold, we obtain the following results.

Theorem 3. Let (M, g) be a complete non-compact Riemannian manifold, and (N, h, ξ, λ) a nontrivial Ricci soliton with $\operatorname{Ric}^{N} < \mu h$, for some constant $\mu < \lambda$. If $\varphi : (M, g) \longrightarrow (N, h)$ is harmonic map, satisfying

$$\int_{M} |\xi \circ \varphi|^2 v^g < \infty, \tag{2.23}$$

then φ is constant.

Proof. Let ρ be a smooth function with compact support on M, we set

$$\omega(X) = h(\xi \circ \varphi, \rho^2 d\varphi(X)), \quad X \in \Gamma(TM).$$
(2.24)

Let $\{e_i\}_{i=1}^m$ be a geodesic frame field around $x \in M$. At x we have

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} e_{i} \big[h \big(\xi \circ \varphi, \rho^{2} d\varphi(e_{i}) \big) \big], \qquad (2.25)$$

by equation (2.25), and the harmonicity condition of φ , we get

$$\operatorname{div}^{M} \omega = \sum_{i=1}^{m} \left[h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} d\varphi(e_{i}) \right) + h \left(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} \rho^{2} d\varphi(e_{i}) \right) \right] \\ = \sum_{i=1}^{m} \left[\rho^{2} h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), d\varphi(e_{i}) \right) + 2\rho e_{i}(\rho) h \left(\xi \circ \varphi, d\varphi(e_{i}) \right) \right], \quad (2.26)$$

by the soliton equation, we find that

$$\rho^{2} \sum_{i=1}^{m} h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), d\varphi(e_{i}) \right) = \lambda \rho^{2} \sum_{i=1}^{m} h \left(d\varphi(e_{i}), d\varphi(e_{i}) \right) \\ -\rho^{2} \sum_{i=1}^{m} \operatorname{Ric}^{N} \left(d\varphi(e_{i}), d\varphi(e_{i}) \right), \quad (2.27)$$

by Young's inequality we have

$$-2\rho \sum_{i=1}^{m} e_i(\rho) h\big(\xi \circ \varphi, d\varphi(e_i)\big) \le \epsilon \rho^2 |d\varphi|^2 + \frac{1}{\epsilon} |\operatorname{grad}^M \rho|^2 |\xi \circ \varphi|^2,$$
(2.28)

for all $\epsilon > 0$. From (2.26), (2.27) and (2.28) we deduce the inequality

$$\begin{split} \lambda \rho^2 |d\varphi|^2 &- \rho^2 \sum_{i=1}^m \operatorname{Ric}^N \left(d\varphi(e_i), d\varphi(e_i) \right) &- \operatorname{div}^M \omega \\ &\leq \epsilon \rho^2 |d\varphi|^2 + \frac{1}{\epsilon} |\operatorname{grad}^M \rho|^2 |\xi \circ \varphi|^2. \end{split}$$
(2.29)

Take $\epsilon = \lambda - \mu$, from (2.29) we obtain

$$\rho^{2} \Big[\mu |d\varphi|^{2} - \sum_{i=1}^{m} \operatorname{Ric}^{N} \left(d\varphi(e_{i}), d\varphi(e_{i}) \right) \Big] - \operatorname{div}^{M} \omega$$

$$\leq \frac{1}{\lambda - \mu} |\operatorname{grad}^{M} \rho|^{2} |\xi \circ \varphi|^{2}. \quad (2.30)$$

By the divergence theorem and inequality (2.30), we have

$$\int_{M} \rho^{2} \Big[\mu |d\varphi|^{2} - \sum_{i=1}^{m} \operatorname{Ric}^{N} \left(d\varphi(e_{i}), d\varphi(e_{i}) \right) \Big] v^{g} \\ \leq \frac{1}{\lambda - \mu} \int_{M} |\operatorname{grad}^{M} \rho|^{2} |\xi \circ \varphi|^{2} v^{g}.$$
(2.31)

Consider the smooth function $\rho = \rho_R$ such that, $\rho \leq 1$ on M, $\rho = 1$ on the ball B(p, R), $\rho = 0$ on $M \setminus B(p, 2R)$ and $|\operatorname{grad}^M \rho| \leq \frac{2}{R}$. From inequality (2.31), we conclude that

$$\int_{M} \rho^{2} \Big[\mu |d\varphi|^{2} - \sum_{i=1}^{m} \operatorname{Ric}^{N} \left(d\varphi(e_{i}), d\varphi(e_{i}) \right) \Big] v^{g}$$

$$\leq \frac{4}{(\lambda - \mu)R^{2}} \int_{M} |\xi \circ \varphi|^{2} v^{g}, \qquad (2.32)$$

since $\int_M |\xi \circ \varphi|^2 v^g < \infty$, when $R \to \infty$, we obtain

$$\int_{M} \left[\mu |d\varphi|^2 - \sum_{i=1}^{m} \operatorname{Ric}^{N} \left(d\varphi(e_i), d\varphi(e_i) \right) \right] v^g = 0.$$
(2.33)

Consequently, $d\varphi(e_i) = 0$ for all $i = \overline{1, m}$ (because $\mu h - \operatorname{Ric}^N > 0$), that is φ is constant. \Box

If M = N and $\varphi = Id_M$, from Theorem 3, we deduce:

Corollary 5. Let (M, g, ξ, λ) be a complete non-compact nontrivial Ricci soliton with Ric $< \mu h$ for some constant $\mu < \lambda$. Then

$$\int_M |\xi|^2 v^g = \infty.$$

2.4 Bi-harmonic maps to Ricci solitons

Theorem 4. Let (M,g) be a compact orientable Riemannian manifold without boundary, and (N,h,ξ,λ) a nontrivial Ricci soliton with

$$\operatorname{Ric}^N > \lambda h$$
 or $\operatorname{Ric}^N < \lambda h$.

Suppose that ξ is Jacobi-type vector field. Then any bi-harmonic map φ from (M,g) to (N,h) is constant.

Proof. We set

$$\eta(X) = h\big(\xi \circ \varphi, \nabla_X^{\varphi} \tau(\varphi)\big), \quad X \in \Gamma(TM).$$
(2.34)

Calculating in a geodesic frame field around $x \in M$ we have

$$\operatorname{div}^{M} \eta = \sum_{i=1}^{m} e_{i} \left[h \left(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} \tau(\varphi) \right) \right]$$

$$= \sum_{i=1}^{m} \left[h \left(\nabla_{e_{i}}^{\varphi} (\xi \circ \varphi), \nabla_{e_{i}}^{\varphi} \tau(\varphi) \right) + h \left(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} \nabla_{e_{i}}^{\varphi} \tau(\varphi) \right) \right], \qquad (2.35)$$

from equation (2.35), and the bi-harmonicity condition of φ , we get

$$\operatorname{div}^{M} \eta = \sum_{i=1}^{m} \left[h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \nabla_{e_{i}}^{\varphi} \tau(\varphi) \right) - h \left(R^{N}(\tau(\varphi), d\varphi(e_{i})) d\varphi(e_{i}), \xi \circ \varphi \right) \right],$$
(2.36)

the first term on the left-hand side of (2.36) is

$$\sum_{i=1}^{m} h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \nabla_{e_{i}}^{\varphi} \tau(\varphi) \right) = \sum_{i=1}^{m} \left[e_{i} \left[h \left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \tau(\varphi) \right) \right] - h \left(\nabla_{e_{i}}^{\varphi} \nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \tau(\varphi) \right) \right], \quad (2.37)$$

by equations (2.36), (2.37), and the following property

$$h(R^N(X,Y)Z,W) = h(R^N(W,Z)Y,X),$$

where $X, Y, Z, W \in \Gamma(TN)$, we conclude that

$$\operatorname{div}^{M} \eta = \operatorname{div}^{M} h \left(\nabla^{\varphi}_{\cdot}(\xi \circ \varphi), \tau(\varphi) \right) - \sum_{i=1}^{m} h \left(\nabla^{\varphi}_{e_{i}} \nabla^{\varphi}_{e_{i}}(\xi \circ \varphi), \tau(\varphi) \right) - \sum_{i=1}^{m} h \left(R^{N}(\xi \circ \varphi, d\varphi(e_{i})) d\varphi(e_{i}), \tau(\varphi) \right),$$

$$(2.38)$$

since ξ is a Jacobi-type vector field, we have

$$\operatorname{div}^{M} \eta = \operatorname{div}^{M} h \left(\nabla^{\varphi}_{\cdot}(\xi \circ \varphi), \tau(\varphi) \right) - h \left(\nabla^{N}_{\tau(\varphi)} \xi, \tau(\varphi) \right),$$
(2.39)

182

by the soliton equation, we get

$$\operatorname{div}^{M} \eta = \operatorname{div}^{M} h \left(\nabla^{\varphi}_{\cdot} (\xi \circ \varphi), \tau(\varphi) \right) -\lambda |\tau(\varphi)|^{2} + \operatorname{Ric}^{N}(\tau(\varphi), \tau(\varphi)), \qquad (2.40)$$

from equation (2.40), and the divergence theorem, with $\operatorname{Ric}^N < \lambda h$ (or $\operatorname{Ric}^N > \lambda h$), we get $\tau(\varphi) = 0$, i.e., φ is harmonic map, so by the Proposition 2, φ is constant.

From Theorem 4, we deduce:

Corollary 6. Let (M, g, ξ, λ) be a compact nontrivial Ricci soliton with

 $\operatorname{Ric} > \lambda g$ or $\operatorname{Ric} < \lambda g$.

Then ξ is not Jacobi-type vector field.

Acknowledgement The author would like to thank the editor and the reviewers for their useful remarks and suggestions.

References

- P. BAIRD, J. C. WOOD, Harmonic morphisms between Riemannain manifolds, Clarendon Press Oxford (2003).
- [2] D. E. BLAIR, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer (1976).
- [3] R. CADDEO, S. MONTALDO, C. ONICIUC, Biharmonic submanifolds of S³, Internat. J. Math. 12 (2001), 867-876.
- [4] N. COURSE, f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13 (2007), 423-435.
- [5] S. DESHMUKH, Jacobi-type vector fields and Ricci soliton, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (2012), 41-50.
- [6] K. L. DUGGAL, R. SHARMA, Symmetries of Spacetimes and Riemannian Manifolds, Kluwer Academic Publishers, Dordrecht (1999).
- [7] J. EELLS, J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
- [8] R. HAMILTON, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237-262.
- [9] R. HAMILTON, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), 225-243.
- [10] G. Y. JIANG, 2-harmonic maps and their first and second variational formulas, *Chinese Ann. Math. Ser. A* 7 (1986), 389-402.

- [11] W. KÜHNEL, H. RADEMACHER, Conformal vector fields on pseudo-Riemannian spaces, Differential Geometry and its Applications 7 (1997), 237-250.
- [12] E. LOUBEAU, C. ONICIUC, On the biharmonic and harmonic indices of the Hopf map, Trans. Amer. Math. Soc. 359 (2007), 5239-5256.
- [13] A. MOHAMMED CHERIF, Some results on harmonic and bi-harmonic maps, Int. J. Geom. Methods Mod. Phys. 14 (2017).
- [14] B. O'NEIL, Semi-Riemannian Geometry, Academic Press, New York (1983).
- [15] S. OUAKKAS, R. NASRI, M. DJAA, On the *f*-harmonic and *f*-biharmonic maps, JP Journal of Geometry and Topology 10 (2010), 11-27.
- [16] S. PIGOLA, M. RIMOLDI, A. G. SETTI, Remarks on non-compact gradient Ricci solitons, *Math. Z.* 268 (2011), 777-790.
- [17] Y. XIN, Geometry of harmonic maps, Fudan University (1996).
- [18] K. YANO, T. NAGANO, The de Rham decomposition, isometries and affine transformations in Riemannian space, Jpn. J. Math. 29 (1959), 173-184.
- [19] S. T. YAU, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.

Received: 08.07.2023 Revised: 04.10.2023 Accepted: 08.10.2023

> University Mustapha Stambouli Mascara, Faculty of Exact Sciences, Mascara 29000, Algeria E-mail: a.mohammedcherif@univ-mascara.dz