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Abstract

In this paper, we study the existence of harmonic and bi-harmonic maps into
Riemannian manifolds admitting a conformal vector field, or a nontrivial Ricci solitons.

Key Words: Harmonic maps, bi-harmonic maps, Ricci solitons, conformal
vector fields.
2020 Mathematics Subject Classification: 53C25, 53C43, 58E20.

1 Preliminaries and notations

We give some definitions. (1) Let (M, g) be a Riemannian manifold. By RM and RicM

we denote respectively the Riemannian curvature tensor and the Ricci curvature of (M, g).
Thus RM and RicM are defined by

RM (X,Y )Z = ∇M
X ∇M

Y Z −∇M
Y ∇M

X Z −∇M
[X,Y ]Z, (1.1)

RicM (X,Y ) =

m∑
i=1

g(RM (X, ei)ei, Y ), (1.2)

where ∇M is the Levi-Civita connection with respect to g, {ei}mi=1 is a local orthonormal
frame field on (M, g), and X,Y, Z ∈ Γ(TM). The divergence of (0, p)-tensor α on (M, g) is
defined by

(divM α)(X1, ..., Xp−1) =

m∑
i=1

(∇eiα)(ei, X1, ..., Xp−1), (1.3)

where X1, ..., Xp−1 ∈ Γ(TM), and ∇eiα is the covariant derivative of α relative to ei. Given
a smooth function f on M , the gradient of f is defined by

g(gradM f,X) = X(f), (1.4)

the Hessian of f is defined by

(HessM f)(X,Y ) = g(∇M
X gradM f, Y ), (1.5)

where X,Y ∈ Γ(TM) (for more details, see for example [14]).
(2) A vector field ξ on a Riemannian manifold (M, g) is called a conformal if Lξg = 2fg, for
some smooth function f on M , where Lξg is the Lie derivative of the metric g with respect
to ξ, that is

g(∇M
X ξ, Y ) + g(∇M

Y ξ,X) = 2fg(X,Y ), ∀X,Y ∈ Γ(TM). (1.6)
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The function f = (divM ξ)/m is then called the potential function of the conformal vector
field ξ. If ξ is conformal with constant potential function f , then it is called homothetic,
while f = 0 it is Killing (see [1], [11], [18]).
(3) A Ricci soliton structure on a Riemannian manifold (M, g) is the choice of a smooth
vector field ξ satisfying the soliton equation

RicM +
1

2
Lξg = λg, (1.7)

for some constant λ ∈ R. The Ricci soliton (M, g, ξ, λ) is said to be shrinking, steady or
expansive according to whether the coefficient λ appearing in equation (1.7) satisfies λ > 0,
λ = 0 or λ < 0. In the special case where ξ = gradM f , for some smooth function f on M ,
we say that (M, g, gradM f, λ) is a gradient Ricci soliton with potential f . In this situation,
the soliton equation reads

RicM +HessM f = λg, (1.8)

(see [8], [9], [16]). If ξ = 0, we recover the definition of an Einstein metric with Einstein
constant λ. If (M, g) is not Einstein, we call the soliton nontrivial.
(4) A vector field ξ on a Riemannian manifold (M, g) is said to be a Jacobi-type vector field
if it satisfies

∇M
X ∇M

X ξ −∇M
∇M

X Xξ +RM (ξ,X)X = 0, ∀X ∈ Γ(TM). (1.9)

Note that, there are Jacobi-type vector fields on a Riemannian manifold which are not
Killing vector fields (see [5]). Note that, a homothetic vector field on a Riemannian manifold
is a Jacobi-type vector field (see [13]).
(5) Let φ : (M, g) −→ (N,h) be a smooth map between two Riemannian manifolds, τ(φ)
the tension field of φ given by

τ(φ) = traceg ∇dφ =

m∑
i=1

[
∇φ

eidφ(ei)− dφ(∇M
ei ei)

]
, (1.10)

where ∇M is the Levi-Civita connection of (M, g), ∇φ denote the pull-back connection on
φ−1TN and {ei}mi=1 is a local orthonormal frame field on (M, g). Then φ is called harmonic
if the tension field vanishes, i.e., τ(φ) = 0 (see [1], [3], [7], [17]). We define the index form
for harmonic maps by (see [4], [15])

I(v, w) =

∫
M

h(Jφ(v), w)v
g, ∀v, w ∈ Γ(φ−1TN), (1.11)

(or over any compact subset D ⊂ M), where

Jφ(v) = − traceg R
N (v, dφ)dφ− traceg(∇φ)2v

= −
m∑
i=1

RN (v, dφ(ei))dφ(ei)−
m∑
i=1

[
∇φ

ei∇
φ
eiv −∇φ

∇M
ei

ei
v
]
, (1.12)

RN is the curvature tensor of (N,h), ∇N is the Levi-Civita connection of (N,h), and vg is
the volume form of (M, g) (see [1]). If τ2(φ) ≡ Jφ(τ(φ)) is null on M , then φ is called a
bi-harmonic map (see [3], [10], [12]).
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2 Main results

2.1 Harmonic maps and conformal vector fields

Proposition 1. Let (M, g) be a compact orientable Riemannian manifold without bound-
ary, and (N,h) a Riemannian manifold admitting a conformal vector field ξ with potential
function f > 0 at any point. Then, any harmonic map φ from (M, g) to (N,h) is constant.

Proof. Let X ∈ Γ(TM), we set

ω(X) = h
(
ξ ◦ φ, dφ(X)

)
. (2.1)

Let {ei}mi=1 be a geodesic frame field around x ∈ M . At x we have

divM ω =

m∑
i=1

ei
[
h
(
ξ ◦ φ, dφ(ei)

)]
, (2.2)

by equation (2.2), and the harmonicity condition of φ, we get

divM ω =

m∑
i=1

h
(
∇φ

ei(ξ ◦ φ), dφ(ei)
)
, (2.3)

since ξ is a conformal vector field, we find that

divM ω = (f ◦ φ)
m∑
i=1

h
(
dφ(ei), dφ(ei)

)
= (f ◦ φ)|dφ|2. (2.4)

The Proposition 1 follows from equation (2.4), and the divergence theorem (see [1]), with
f > 0 on N .

Remark 1. (1) Proposition 1 remains true if the potential function f < 0 on N (consider
the conformal vector field ξ̄ = −ξ).
(2) If the potential function is non-zero constant, that is Lξh = 2kh on (N,h) with k 6=
0, then any harmonic map φ from a compact orientable Riemannian manifold without
boundary (M, g) to (N,h) is necessarily constant (see [13]).
(3) An harmonic map from a compact orientable Riemannian manifold without boundary
to a Riemannian manifold admitting a Killing vector field is not necessarily constant (for
example the identity map on the unit (2n+ 1)-dimensional sphere on R2n+2, note that the
unit odd-dimensional sphere admits a Killing vector field (see [2]).

From Proposition 1, we get the following result.

Corollary 1. Let (N, h) be an n-dimensional Riemannian manifold which admits a Killing
vector field ξ. Consider (N,h) a Riemannian hypersurface of (N, h) such that h is the
induced metric of h on N . Suppose that
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• (N,h) is totally umbilical, that is

B(X,Y ) = ρh(X,Y )η, ∀X,Y ∈ Γ(TN),

for some smooth function ρ on N , where B is the second fundamental form of N on
N given by B(X,Y ) = (∇XY )⊥, ∇ is the Levi-Civita connection on N , and η is the
unit normal to N ;

• the function h(ξ,H) 6= 0 everywhere on N , where H is the mean curvature of (N,h)
given by the formula

H =
1

n− 1
traceh B.

Then, any harmonic map from a compact orientable Riemannian manifold without boundary
to (N,h) is constant.

Proof. It is possible to express ξ along N as ξ = ξ + fη, where ξ is tangent to N and f is
a smooth function on N . Thus we have

(Lξh)(X,Y ) = (Lξh)(X,Y ) + f{h(∇Xη, Y ) + h(∇Y η,X)}, (2.5)

where X,Y ∈ Γ(TN) (see [6]), by equation (2.5) with Lξh = 0, we get

(Lξh)(X,Y ) = 2fh(η,B(X,Y )). (2.6)

Since (N,h) is totally umbilical, (2.6) becomes

(Lξh)(X,Y ) = 2fρh(X,Y ). (2.7)

The Corollary follows from Proposition 1 and equation (2.7) with

fρ = h(ξ, η)h(H, η) = h(ξ,H).

Example 1. Let N = Rn equipped with the standard Riemannian metric h = 〈, 〉Rn . We
consider the hypersurface N = Sn−1 ∩ {y ∈ Rn, yn > 0} in N , where Sn−1 is the unit
(n− 1)-dimensional sphere on Rn. Let h the induced Riemannian metric on N . It is easy
to show that (N,h) is totally umbilical, with B(X,Y ) = −h(X,Y )P for all X,Y ∈ Γ(TN),
where P is the position vector field of Rn (see [14]). Here, ρ = 1 and η = −P along N .
We have the following

h(
∂

∂yn
,H) = −yn 6= 0,

everywhere on N . Since ξ = ∂/∂yn is a Killing vector field on (N, h), according to Corollary
1, any harmonic map from a compact orientable Riemannian manifold without boundary to
an open hemisphere is constant. Here, the tangent vector field ξ is given by

ξ = ξ − fη

=
∂

∂yn
− 〈 ∂

∂yn
, P 〉RnP

=
∂

∂yn
− yn

n∑
i=1

yi
∂

∂yi
.
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Note that, the hypersurface (N,h) can be parameterized by

(u1, ..., un−1) 7−→
(
u1, ..., un−1,

√
1− u2

1 − ...− u2
n−1

)
.

By using this parameterization and the last equation, we find that

ξ = −
√
1− u2

1 − ...− u2
n−1

n−1∑
i=1

ui
∂

∂ui
.

Thus, from equation (2.7), ξ is conformal vector field on (N,h) with potential function

f = −
√
1− u2

1 − ...− u2
n−1.

In the case of non-compact Riemannian manifold, we obtain the following results.

Theorem 1. Let (M, g) be a complete non-compact Riemannian manifold, and (N,h) a
Riemannian manifold admitting a conformal vector field ξ with potential function f > 0 at
any point. If φ : (M, g) −→ (N,h) is harmonic map, satisfying∫

M

|ξ ◦ φ|2

f ◦ φ
vg < ∞, (2.8)

then φ is constant.

Proof. Let ρ be a smooth function with compact support on M , we set

ω(X) = h
(
ξ ◦ φ, ρ2dφ(X)

)
, X ∈ Γ(TM). (2.9)

Let {ei}mi=1 be a geodesic frame field around x ∈ M . At x we have

divM ω =

m∑
i=1

ei
[
h
(
ξ ◦ φ, ρ2dφ(ei)

)]
, (2.10)

by equation (2.10), and the harmonicity condition of φ, we get

divM ω =

m∑
i=1

[
h
(
∇φ

ei(ξ ◦ φ), ρ
2dφ(ei)

)
+ h

(
ξ ◦ φ,∇φ

eiρ
2dφ(ei)

)]
=

m∑
i=1

[
ρ2h

(
∇φ

ei(ξ ◦ φ), dφ(ei)
)
+ 2ρei(ρ)h

(
ξ ◦ φ, dφ(ei)

)]
, (2.11)

since ξ is a conformal vector field with potential function f , we find that

ρ2
m∑
i=1

h
(
∇φ

ei(ξ ◦ φ), dφ(ei)
)
= (f ◦ φ)ρ2

m∑
i=1

h
(
dφ(ei), dφ(ei)

)
, (2.12)

by Young’s inequality we have

−2ρ

m∑
i=1

ei(ρ)h
(
ξ ◦ φ, dφ(ei)

)
≤ λρ2|dφ|2 + 1

λ
| gradM ρ|2|ξ ◦ φ|2, (2.13)
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for all function λ > 0 on M , because of the inequality

m∑
i=1

|
√
λρdφ(ei) +

1√
λ
ei(ρ)(ξ ◦ φ)|2 ≥ 0.

From (2.11), (2.12) and (2.13) we deduce the inequality

(f ◦ φ)ρ2|dφ|2 − divM ω ≤ λρ2|dφ|2 + 1

λ
| gradM ρ|2|ξ ◦ φ|2. (2.14)

Take λ = (f ◦ φ)/2, from (2.14) we have

1

2
(f ◦ φ)ρ2|dφ|2 − divM ω ≤ 2

f ◦ φ
| gradM ρ|2|ξ ◦ φ|2, (2.15)

by using the divergence theorem and inequality (2.15), we find that

1

2

∫
M

(f ◦ φ)ρ2|dφ|2vg ≤ 2

∫
M

| gradM ρ|2 |ξ ◦ φ|
2

f ◦ φ
vg. (2.16)

Consider the smooth function ρ = ρR such that, ρ ≤ 1 on M , ρ = 1 on the ball B(p,R),
ρ = 0 on M\B(p, 2R) and | gradM ρ| ≤ 2

R (see [19]). From (2.16), we get

1

2

∫
M

(f ◦ φ)ρ2|dφ|2vg ≤ 8

R2

∫
M

|ξ ◦ φ|2

f ◦ φ
vg, (2.17)

since
∫
M

|ξ◦φ|2
f◦φ vg < ∞, when R → ∞, we obtain∫

M

(f ◦ φ)|dφ|2vg = 0. (2.18)

Consequently, |dφ| = 0, that is φ is constant.

From Theorem 1, we get the following.

Corollary 2. Let (M, g) be a complete non-compact Riemannian manifold and let ξ a
conformal vector field on (M, g) with potential function f > 0 at any point. Then∫

M

|ξ|2

f
vg = ∞.

2.2 Bi-harmonic maps and conformal vector fields

Theorem 2. Let (M, g) be a compact orientable Riemannian manifold without boundary,
and let ξ a conformal vector field with non-constant potential function f on a Riemannian
manifold (N,h) such that gradN f is parallel. Then, any bi-harmonic map φ from (M, g)
to (N,h) is constant.

For the proof of Theorem 2, we need the following Lemma.
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Lemma 1. [13] Let (M, g) be a compact orientable Riemannian manifold without boundary
and (N,h) a Riemannian manifold admitting a proper homothetic vector field ζ, i.e., Lζh =
2kh with k ∈ R∗. Then, any bi-harmonic map φ from (M, g) to (N,h) is constant.

Proof of Theorem 2. We set ζ = [gradN f, ξ], since gradN f is parallel on (N,h), then ζ is
an homothetic vector field satisfying ∇N

U ζ = |gradN f |2U for any U ∈ Γ(TN) (see [11]).
The Theorem 2 follows from Lemma 1.

From Theorem 2, we deduce:

Corollary 3. Let (M, g) be a compact orientable Riemannian manifold without boundary,
and let ξ a conformal vector field with non-constant potential function f on (M, g). Then,
grad f is not parallel.

2.3 Harmonic maps to Ricci solitons

Proposition 2. Let (M, g) be a compact orientable Riemannian manifold without boundary,
and (N,h, ξ, λ) a nontrivial Ricci soliton with

RicN > λh or RicN < λh.

Then any harmonic map φ from (M, g) to (N,h) is constant.

Proof. Let X ∈ Γ(TM), we set

ω(X) = h
(
ξ ◦ φ, dφ(X)

)
. (2.19)

Let {ei}mi=1 be a geodesic frame field around x ∈ M . At x we have

divM ω =

m∑
i=1

ei
[
h
(
ξ ◦ φ, dφ(ei)

)]
, (2.20)

by equation (2.20), and the harmonicity condition of φ, we get

divM ω =

m∑
i=1

h
(
∇φ

ei(ξ ◦ φ), dφ(ei)
)
=

1

2

m∑
i=1

(Lξh)(dφ(ei), dφ(ei)), (2.21)

from the soliton equation, we find that

divM ω = λ

m∑
i=1

h
(
dφ(ei), dφ(ei)

)
−

m∑
i=1

RicN (dφ(ei), dφ(ei)). (2.22)

The Proposition 2 follows from equation (2.22), and the divergence theorem.

Remark 2. The condition RicN > λh (resp. RicN < λh) is equivalent to RicN (v, v) >
λh(v, v) (resp. RicN (v, v) < λh(v, v)), for any v ∈ TpN − {0}, where p ∈ N .
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It is known that the cigar soliton

(R2,
dx2 + dy2

1 + x2 + y2
),

is steady with strictly positive Ricci tensor (see [8]). According to Proposition 2, we have
the following

Corollary 4. Any harmonic map φ from a compact orientable Riemannian manifold with-
out boundary to the cigar soliton is constant.

In the case of non-compact Riemannian manifold, we obtain the following results.

Theorem 3. Let (M, g) be a complete non-compact Riemannian manifold, and (N,h, ξ, λ)
a nontrivial Ricci soliton with RicN < µh, for some constant µ < λ. If φ : (M, g) −→ (N,h)
is harmonic map, satisfying ∫

M

|ξ ◦ φ|2vg < ∞, (2.23)

then φ is constant.

Proof. Let ρ be a smooth function with compact support on M , we set

ω(X) = h
(
ξ ◦ φ, ρ2dφ(X)

)
, X ∈ Γ(TM). (2.24)

Let {ei}mi=1 be a geodesic frame field around x ∈ M . At x we have

divM ω =

m∑
i=1

ei
[
h
(
ξ ◦ φ, ρ2dφ(ei)

)]
, (2.25)

by equation (2.25), and the harmonicity condition of φ, we get

divM ω =

m∑
i=1

[
h
(
∇φ

ei(ξ ◦ φ), ρ
2dφ(ei)

)
+ h

(
ξ ◦ φ,∇φ

eiρ
2dφ(ei)

)]
=

m∑
i=1

[
ρ2h

(
∇φ

ei(ξ ◦ φ), dφ(ei)
)
+ 2ρei(ρ)h

(
ξ ◦ φ, dφ(ei)

)]
, (2.26)

by the soliton equation, we find that

ρ2
m∑
i=1

h
(
∇φ

ei(ξ ◦ φ), dφ(ei)
)

= λρ2
m∑
i=1

h
(
dφ(ei), dφ(ei)

)
−ρ2

m∑
i=1

RicN
(
dφ(ei), dφ(ei)

)
, (2.27)

by Young’s inequality we have

−2ρ

m∑
i=1

ei(ρ)h
(
ξ ◦ φ, dφ(ei)

)
≤ ϵρ2|dφ|2 + 1

ϵ
| gradM ρ|2|ξ ◦ φ|2, (2.28)
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for all ϵ > 0. From (2.26), (2.27) and (2.28) we deduce the inequality

λρ2|dφ|2 − ρ2
m∑
i=1

RicN
(
dφ(ei), dφ(ei)

)
− divM ω

≤ ϵρ2|dφ|2 + 1

ϵ
| gradM ρ|2|ξ ◦ φ|2. (2.29)

Take ϵ = λ− µ, from (2.29) we obtain

ρ2
[
µ|dφ|2 −

m∑
i=1

RicN
(
dφ(ei), dφ(ei)

)]
− divM ω

≤ 1

λ− µ
| gradM ρ|2|ξ ◦ φ|2. (2.30)

By the divergence theorem and inequality (2.30), we have∫
M

ρ2
[
µ|dφ|2 −

m∑
i=1

RicN
(
dφ(ei), dφ(ei)

)]
vg

≤ 1

λ− µ

∫
M

| gradM ρ|2|ξ ◦ φ|2vg. (2.31)

Consider the smooth function ρ = ρR such that, ρ ≤ 1 on M , ρ = 1 on the ball B(p,R),
ρ = 0 on M\B(p, 2R) and | gradM ρ| ≤ 2

R . From inequality (2.31), we conclude that∫
M

ρ2
[
µ|dφ|2 −

m∑
i=1

RicN
(
dφ(ei), dφ(ei)

)]
vg

≤ 4

(λ− µ)R2

∫
M

|ξ ◦ φ|2vg, (2.32)

since
∫
M

|ξ ◦ φ|2vg < ∞, when R → ∞, we obtain∫
M

[
µ|dφ|2 −

m∑
i=1

RicN
(
dφ(ei), dφ(ei)

)]
vg = 0. (2.33)

Consequently, dφ(ei) = 0 for all i = 1,m (because µh − RicN > 0), that is φ is constant.

If M = N and φ = IdM , from Theorem 3, we deduce:

Corollary 5. Let (M, g, ξ, λ) be a complete non-compact nontrivial Ricci soliton with Ric <
µh for some constant µ < λ. Then ∫

M

|ξ|2vg = ∞.
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2.4 Bi-harmonic maps to Ricci solitons

Theorem 4. Let (M, g) be a compact orientable Riemannian manifold without boundary,
and (N,h, ξ, λ) a nontrivial Ricci soliton with

RicN > λh or RicN < λh.

Suppose that ξ is Jacobi-type vector field. Then any bi-harmonic map φ from (M, g) to
(N,h) is constant.

Proof. We set
η(X) = h

(
ξ ◦ φ,∇φ

Xτ(φ)
)
, X ∈ Γ(TM). (2.34)

Calculating in a geodesic frame field around x ∈ M we have

divM η =

m∑
i=1

ei
[
h
(
ξ ◦ φ,∇φ

eiτ(φ)
)]

=

m∑
i=1

[
h
(
∇φ

ei(ξ ◦ φ),∇
φ
eiτ(φ)

)
+ h

(
ξ ◦ φ,∇φ

ei∇
φ
eiτ(φ)

)]
, (2.35)

from equation (2.35), and the bi-harmonicity condition of φ, we get

divM η =

m∑
i=1

[
h
(
∇φ

ei(ξ ◦ φ),∇
φ
eiτ(φ)

)
−h

(
RN (τ(φ), dφ(ei))dφ(ei), ξ ◦ φ

)]
, (2.36)

the first term on the left-hand side of (2.36) is

m∑
i=1

h
(
∇φ

ei(ξ ◦ φ),∇
φ
eiτ(φ)

)
=

m∑
i=1

[
ei
[
h
(
∇φ

ei(ξ ◦ φ), τ(φ)
)]

−h
(
∇φ

ei∇
φ
ei(ξ ◦ φ), τ(φ)

)]
, (2.37)

by equations (2.36), (2.37), and the following property

h(RN (X,Y )Z,W ) = h(RN (W,Z)Y,X),

where X,Y, Z,W ∈ Γ(TN), we conclude that

divM η = divM h
(
∇φ

· (ξ ◦ φ), τ(φ)
)
−

m∑
i=1

h
(
∇φ

ei∇
φ
ei(ξ ◦ φ), τ(φ)

)
−

m∑
i=1

h
(
RN (ξ ◦ φ, dφ(ei))dφ(ei), τ(φ)

)
, (2.38)

since ξ is a Jacobi-type vector field, we have

divM η = divM h
(
∇φ

· (ξ ◦ φ), τ(φ)
)
− h

(
∇N

τ(φ)ξ, τ(φ)
)
, (2.39)
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by the soliton equation, we get

divM η = divM h
(
∇φ

· (ξ ◦ φ), τ(φ)
)

−λ|τ(φ)|2 +RicN (τ(φ), τ(φ)), (2.40)

from equation (2.40), and the divergence theorem, with RicN < λh (or RicN > λh), we get
τ(φ) = 0, i.e., φ is harmonic map, so by the Proposition 2, φ is constant.

From Theorem 4, we deduce:

Corollary 6. Let (M, g, ξ, λ) be a compact nontrivial Ricci soliton with

Ric > λg or Ric < λg.

Then ξ is not Jacobi-type vector field.
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