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Abstract

In this paper, we study the existence of harmonic and bi-harmonic maps into
Riemannian manifolds admitting a conformal vector field, or a nontrivial Ricci solitons.
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1 Preliminaries and notations
We give some definitions. (1) Let (M, g) be a Riemannian manifold. By R™ and Ric"

we denote respectively the Riemannian curvature tensor and the Ricci curvature of (M, g).
Thus RM and Ric™ are defined by

RM(X,Y)Z = VNV Z - VYV Z -V Z, (1.1)
Ric" (X, V) =) " g(RM (X, e:)e;,Y), (1.2)
i=1

where VM is the Levi-Civita connection with respect to g, {e;}™, is a local orthonormal
frame field on (M, g), and X,Y,Z € I'(T'M). The divergence of (0, p)-tensor o on (M, g) is
defined by

m

(div™ @) (X1, Xpo1) = D (Ve,0) (€5, X1, 000, Xpo1), (1.3)
i=1

where X1,...,X,_1 € T(TM), and V., « is the covariant derivative of « relative to e;. Given
a smooth function f on M, the gradient of f is defined by

g(grad™ f, X) = X(f), (1.4)
the Hessian of f is defined by
(Hess™ f)(X,Y) = (VY grad™ £,Y), (1.5)

where X,Y € I'(T'M) (for more details, see for example [14]).

(2) A vector field £ on a Riemannian manifold (M, g) is called a conformal if L¢g = 2fg, for
some smooth function f on M, where L¢g is the Lie derivative of the metric g with respect
to &, that is

g(VXEY) +g(VYeE X)) =2fg(X,Y), VX, Y e(TM). (1.6)
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The function f = (div™ €)/m is then called the potential function of the conformal vector
field £. If € is conformal with constant potential function f, then it is called homothetic,
while f =0 it is Killing (see [1], [11], [18]).

(3) A Ricci soliton structure on a Riemannian manifold (M, g) is the choice of a smooth
vector field £ satisfying the soliton equation

1
Ric™ +§£§g = g, (1.7)

for some constant A € R. The Ricci soliton (M, g,&, A) is said to be shrinking, steady or
expansive according to whether the coefficient A appearing in equation (1.7) satisfies A > 0,
A=0or A< 0. In the special case where & = grad™ f, for some smooth function f on M,
we say that (M, g, gradM f,A) is a gradient Ricei soliton with potential f. In this situation,
the soliton equation reads

RicM + Hess™ f = \g, (1.8)

(see [8], 9], [16]). If & = 0, we recover the definition of an Einstein metric with Einstein
constant A. If (M, g) is not Einstein, we call the soliton nontrivial.
(4) A vector field £ on a Riemannian manifold (M, ¢) is said to be a Jacobi-type vector field
if it satisfies

VY VYE = Viu &+ RY(E, X)X =0, VX e D(TM). (1.9)

Note that, there are Jacobi-type vector fields on a Riemannian manifold which are not
Killing vector fields (see [5]). Note that, a homothetic vector field on a Riemannian manifold
is a Jacobi-type vector field (see [13]).

(5) Let ¢ : (M,g) — (N, h) be a smooth map between two Riemannian manifolds, 7(¢)
the tension field of ¢ given by

m

7(p) = tracey Vdp = Z [Vﬁ_dgp(ei) — d(p(VéVi[ei)}, (1.10)

i=1

where VM is the Levi-Civita connection of (M, g), V¥ denote the pull-back connection on
@ YT'N and {e;}™, is a local orthonormal frame field on (M, g). Then ¢ is called harmonic
if the tension field vanishes, i.e., 7(p) = 0 (see [1], [3], [7], [17]). We define the index form
for harmonic maps by (see [4], [15])

I(v,w) = /M h(J,(v),w)v?, Vo,w € T(p 'TN), (1.11)

(or over any compact subset D C M), where

Jo(v) = —trace, RN (v,dp)dp — trace,(V¥?)%v
= 3" RN (v, deles))dple) = S [vgv;v — V.. 0], (1.12)
i=1 i=1 o

RY is the curvature tensor of (N, h), V¥ is the Levi-Civita connection of (N, h), and v9 is
the volume form of (M, g) (see [1]). If 72(p) = J,(7(p)) is null on M, then ¢ is called a
bi-harmonic map (see [3], [10], [12]).
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2 Main results

2.1 Harmonic maps and conformal vector fields

Proposition 1. Let (M,g) be a compact orientable Riemannian manifold without bound-
ary, and (N, h) a Riemannian manifold admitting a conformal vector field & with potential
function f > 0 at any point. Then, any harmonic map ¢ from (M, g) to (N, h) is constant.

Proof. Let X € T'(TM), we set

w(X) =h(£op,dp(X)). (2.1)
Let {e;}!™, be a geodesic frame field around = € M. At x we have

m

divMw = Zei [h(&op,dole;))], (2.2)

i=1
by equation (2.2), and the harmonicity condition of ¢, we get

m

divMw = Y h(VE (€0 ), deles)), (2.3)

i=1
since £ is a conformal vector field, we find that

m

divM w = (fop) Y h(de(es), dp(e:)) = (f o @)ldepl*. (24)
=1

The Proposition 1 follows from equation (2.4), and the divergence theorem (see [1]), with
f>0on N. ]

Remark 1. (1) Proposition 1 remains true if the potential function f <0 on N (consider
the conformal vector field € = —¢).

(2) If the potential function is non-zero constant, that is Leh = 2kh on (N, h) with k #
0, then any harmonic map @ from a compact orientable Riemannian manifold without
boundary (M, g) to (N, h) is necessarily constant (see [15]).

(8) An harmonic map from a compact orientable Riemannian manifold without boundary
to a Riemannian manifold admitting a Killing vector field is not necessarily constant (for
exzample the identity map on the unit (2n + 1)-dimensional sphere on R*"*2 note that the
unit odd-dimensional sphere admits a Killing vector field (see [2]).

From Proposition 1, we get the following result.

Corollary 1. Let (N, h) be an n-dimensional Riemannian manifold which admits a Killing
vector field {. Consider (N,h) a Riemannian hypersurface of (N,h) such that h is the
induced metric of h on N. Suppose that
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e (N, h) is totally umbilical, that is
B(X,Y) = ph(X,Y)n, VX,Y € (T'N),
Jor some smooth function p on N, where B is the second fundamental form of N on

N given by B(X,Y) = (VxY)L, V is the Levi-Civita connection on N, and 1 is the
unit normal to N;

e the function h(¢, H) # 0 everywhere on N, where H is the mean curvature of (N, h)
given by the formula

H =

1
trace, B.
n—1

Then, any harmonic map from a compact orientable Riemannian manifold without boundary
to (N, h) is constant.

Proof. Tt is possible to express & along N as € = £ + fn, where £ is tangent to N and f is
a smooth function on N. Thus we have

(LR)(X,Y) = (Leh)(X.Y) + H{R(Vxn,Y) + h(Tyn, X)}, (2.5)

where X,Y € I'(T'N) (see [6]), by equation (2.5) with L'EE =0, we get

(Leh)(X,Y) = 2fh(n, B(X,Y)). (2.6)
Since (N, h) is totally umbilical, (2.6) becomes
(Leh)(X,Y) =2fph(X,Y). (2.7)

The Corollary follows from Proposition 1 and equation (2.7) with
fo=h(Enh(H,n) = h(E H).

Example 1. Let N = R" equipped with the standard Riemannian metric h = {,)gn. We
consider the hypersurface N = S*~'n{y € Ry, > 0} in N, where S"~! is the unit
(n — 1)-dimensional sphere on R™. Let h the induced Riemannian metric on N. It is easy
to show that (N, h) is totally umbilical, with B(X,Y) = —h(X,Y)P for all X,Y € T'(TN),
where P is the position vector field of R™ (see [14]). Here, p =1 and n = —P along N.
We have the following 5
O’
everywhere on N. Since € = /0y, is a Killing vector field on (N, h), according to Corollary
1, any harmonic map from a compact orientable Riemannian manifold without boundary to
an open hemisphere is constant. Here, the tangent vector field € is given by

§ = &—[n

- (i P)gn P

R
Oyn  Oyn’

Q

= 0
= @—ynzyz@

i=1
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Note that, the hypersurface (N, h) can be parameterized by

2 2
(Upy ey Up—1) — (ul, ey Up—1, \/1 —uf— ... — un_l).

By using this parameterization and the last equation, we find that

n—1
&= —\/1 —u?— .. —u%flzui%.

=1

177

Thus, from equation (2.7),  is conformal vector field on (N, h) with potential function

f:—\/l—u%—...—ufkl.

In the case of non-compact Riemannian manifold, we obtain the following results.

Theorem 1. Let (M,g) be a complete non-compact Riemannian manifold, and (N, h) a
Riemannian manifold admitting a conformal vector field & with potential function f > 0 at

any point. If ¢ : (M, g) — (N, h) is harmonic map, satisfying
2
/ [€o9l® o .
M foe

Proof. Let p be a smooth function with compact support on M, we set

then ¢ is constant.

W(X) =h(Eop,pPdp(X)), X eT(TM).

Let {e;}™; be a geodesic frame field around = € M. At x we have

m

divM w =" e [h(€ 0 g, pPdip(e))],
1=1

by equation (2.10), and the harmonicity condition of ¢, we get

divMw =

NE

[1(V2.(€ 0 9). pPdplen)) + h( o 0. VE pPdp(ey))]
1

.
Il

I
.MS

[pzh(Vé (o), de(ei)) + 2pei(p)h(E o g, dcp(ei))} ,

=1

since £ is a conformal vector field with potential function f, we find that

m

PP Y h(VE(E o) dples)) = (foe)p® Y h(dp(es), dp(e:)),

i=1 i=1

by Young’s inequality we have

- 1
~2p ) _ei(p)h(§ 0 di(er) < Mp?ldipf? + | grad™ pl*[¢ 0 oI,
i=1

(2.11)

(2.12)

(2.13)



178 On the nonexistence of harmonic and bi-harmonic maps

for all function A > 0 on M, because of the inequality

m

D IV Apdp(e:) + \%ei(p)@ op)|* > 0.

i=1
From (2.11), (2.12) and (2.13) we deduce the inequality
. 1
(f o p)p?ldipl* — div™ w < A\p?|dpl” + S| grad™ pl*[€ o o, (2.14)
Take A = (f o ¢)/2, from (2.14) we have

1 , 2
5 (Fo)p?ldeol? — divw < Fop! grad™ p|*|¢ 0 o], (2.15)

by using the divergence theorem and inequality (2.15), we find that

1 2
5 / (f o @)p?ldipl*v? < 2 / |graa o2l o (2.16)
2 Ju M foyp

Consider the smooth function p = pg such that, p < 1 on M, p = 1 on the ball B(p, R),
p=0on M\B(p,2R) and |grad™ p| < 2 (see [19]). From (2.16), we get

1 2 2 8 / €0l
- d I < — =9 2.17
5 | (roewtlagtor < g5 [ K2 (217)
since [, %vg < 00, when R — oo, we obtain
[ oedaper=o (2.18)
M
Consequently, |dp| = 0, that is ¢ is constant. 0

From Theorem 1, we get the following.

Corollary 2. Let (M,g) be a complete non-compact Riemannian manifold and let & a
conformal vector field on (M, g) with potential function f > 0 at any point. Then

2.2 Bi-harmonic maps and conformal vector fields

Theorem 2. Let (M,g) be a compact orientable Riemannian manifold without boundary,
and let & a conformal vector field with non-constant potential function f on a Riemannian
manifold (N,h) such that grad” f is parallel. Then, any bi-harmonic map ¢ from (M, g)
to (N, h) is constant.

For the proof of Theorem 2, we need the following Lemma.
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Lemma 1. [13] Let (M, g) be a compact orientable Riemannian manifold without boundary
and (N, h) a Riemannian manifold admitting a proper homothetic vector field ¢, i.e., Lch =
2kh with k € R*. Then, any bi-harmonic map ¢ from (M, g) to (N, h) is constant.

Proof of Theorem 2. We set ( = [gradN £, €], since grad® f is parallel on (N, h), then ( is
an homothetic vector field satistying V¢ = |grad” f|2U for any U € T'(TN) (see [11]).
The Theorem 2 follows from Lemma 1. 0

From Theorem 2, we deduce:

Corollary 3. Let (M, g) be a compact orientable Riemannian manifold without boundary,
and let & a conformal vector field with non-constant potential function f on (M,g). Then,
grad f is not parallel.

2.3 Harmonic maps to Ricci solitons

Proposition 2. Let (M, g) be a compact orientable Riemannian manifold without boundary,
and (N, h,&, \) a nontrivial Ricci soliton with

RicV > A or  RicY < \h.
Then any harmonic map ¢ from (M, g) to (N, h) is constant.

Proof. Let X € T(TM), we set

w(X) =h(£op,dp(X)). (2.19)
Let {e;}™, be a geodesic frame field around = € M. At x we have

m

divM w =Y "ei[h(§ 0 @, deles))], (2.20)

i=1

by equation (2.20), and the harmonicity condition of ¢, we get

: 5
divMw = Z h(VE (€ o), dp(e =3 Z Leh)(dp(es), doler)), (2.21)
from the soliton equation, we find that
divM w = )\Zh do(e;), dp(e;)) ZRIC (do(e;),dp(e;)). (2.22)
i=1 i=1
The Proposition 2 follows from equation (2.22), and the divergence theorem. 0

Remark 2. The condition Ric™ > A (resp. Ric < Mh) is equivalent to Ric™ (v,v) >
Ah(v,v) (resp. Ric™ (v,v) < Mh(v,v)), for any v € T,N — {0}, where p € N.
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It is known that the cigar soliton

dz? + dy?
1422+ y?

(RQ )’

is steady with strictly positive Ricci tensor (see [8]). According to Proposition 2, we have
the following

Corollary 4. Any harmonic map ¢ from a compact orientable Riemannian manifold with-
out boundary to the cigar soliton is constant.

In the case of non-compact Riemannian manifold, we obtain the following results.

Theorem 3. Let (M, g) be a complete non-compact Riemannian manifold, and (N,h,&,\)
a nontrivial Ricci soliton with Ric™ < ph, for some constant i < \. Ifp : (M, g) — (N, h)
18 harmonic map, satisfying

/ € 0 p?v9 < o0, (2.23)
M
then ¢ is constant.

Proof. Let p be a smooth function with compact support on M, we set
w(X)=h(Eop, p’dp(X)), X eT(TM). (2.24)

Let {e;}™, be a geodesic frame field around = € M. At x we have

m

divM w = "ei[h(£ 0 @, p*dip(er))]. (2.25)
=1

by equation (2.25), and the harmonicity condition of ¢, we get

NE

divtfw = [h(VZi (€ o), pPdp(e:)) + (€0 p, Vfﬁdsa(ei))}

1

.
Il

I
.MS

[PPR(VE (€ 0 9). diplen)) + 20e(p)h(€ 0, diolen)) |, (226)

=1

by the soliton equation, we find that

m m

p* Z h(VE (Eog).dple))) = Ap? Z h(dg(e:), do(e;))
_P2 Z RicN (dw(ei)a d(p(ei))’ (2'27)

by Young’s inequality we have

U 1
=2p Y _ei(p)h(§ 0 p,dip(en) < ep?ldipf? + —| grad™ pPJ¢ o P, (2.28)
=1
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for all € > 0. From (2.26), (2.27) and (2.28) we deduce the inequality

No?|dp|* — 2X:Puc (de(eq), dp(eq)) divM w

IN

1
ep?ldpl* + —| grad™ p?|¢ o . (2:29)

Take € = A\ — 1, from (2.29) we obtain

P’ {uldwl2 - > Ric" (dW(ei>7d¢(ei))} - divMw

i=1
1
< Afu|gmol”fp|2|§osa|2. (2.30)
By the divergence theorem and inequality (2.30), we have
/M 0* [mdcp|2 ZRIC (dep(ei) dgp(ei))]vg

< 5= ] lmad pPl ol (2.31)
/\—M M

Consider the smooth function p = pg such that, p <1 on M, p =1 on the ball B(p, R),
p=0on M\B(p,2R) and |grad™ p| < 2. From inequality (2.31), we conclude that

/Mpz[uldsOF ZRIC (dg(e:) dw(ei))]vg

< o [ leeet (2.32)

since [, € 0 ¢|*v9 < 0o, when R — oo, we obtain
/ [u|d<p|2 ZRIC (deo(es), d(p(ei))}vg =0. (2.33)

Consequently, dp(e;) = 0 for all i = T, m (because ph — Ric’¥ > 0), that is ¢ is constant.
0

If M = N and ¢ = Idys, from Theorem 3, we deduce:

Corollary 5. Let (M, g,&,\) be a complete non-compact nontrivial Ricci soliton with Ric <
wh for some constant p < X. Then
| 1ePor =0
M
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2.4 Bi-harmonic maps to Ricci solitons

Theorem 4. Let (M, g) be a compact orientable Riemannian manifold without boundary,
and (N, h,&,\) a nontrivial Ricci soliton with

Ric™ >\ or RicY < M.

Suppose that & is Jacobi-type vector field. Then any bi-harmonic map ¢ from (M,g) to
(N, h) is constant.

Proof. We set
n(X)=h(Eop,Vir(p)), X eIl (TM). (2.34)

Calculating in a geodesic frame field around x € M we have

divMy = ei[h(§0 0, VET(9))]

NE

1

.
Il

I

[h(Vfi (o), VET(p)) +h(E o, VﬁV@r(@)] , (2.35)

1=1

from equation (2.35), and the bi-harmonicity condition of ¢, we get

m

divMy = Y [h(Vfi(éw),Ve’iT(s@))

i=1

—h(BY (r(0). dple))dp(er) € ). (2:36)

the first term on the left-hand side of (2.36) is

m m

S h(VE(€op) ¥V = Y [a(VEE o). m(9))]

i=1 i=1
~h(VEVE(§o so)m(so»}, (2.37)
by equations (2.36), (2.37), and the following property
h(RN(X,Y)Z,W) = h(RN (W, Z)Y, X),

where X, Y, Z W € T'(T'N), we conclude that

divt'n = div' h(V (€0 ) 7(9)) = 3 R(VEVE(E 00 T(e)
—Zh(RN@o@,dwei))dw(ei),ﬂw), (238)

i=1

since £ is a Jacobi-type vector field, we have

divt'n = divM h(VE (€0 ), T(p)) — h(VE & T(9)), (2.39)
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by the soliton equation, we get

div™n = diVMh(Vfa(fow)J(@))

=A@ + Ric™ (1(), (), (2.40)
from equation (2.40), and the divergence theorem, with Ric"Y < Ah (or RicY > \h), we get
7(¢) =0, i.e., @ is harmonic map, so by the Proposition 2, ¢ is constant. 0

From Theorem 4, we deduce:
Corollary 6. Let (M, g,&,\) be a compact nontrivial Ricci soliton with
Ric > Ag or Ric<Ag.
Then £ is not Jacobi-type vector field.
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