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Abstract

In this note, we completely determine the half of the super Catalan numbers
S(m,n) = (2721) (2:)/(7"72") modulo 8, which generalizes Eu et al’s congruence re-
garding Catalan numbers C,, modulo 8. In particular, we show that S(m,n)/2 #s 7
for all positive integers m and n. We also derive the half of central binomial coefficients

(2:) modulo 8 as a corollary.
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1 Introduction

The Catalan numbers, given by

1 2
n+1\n

occur in various counting problems. For instance, C,, is the number of monotonic lattice
paths along the edges of a grid with n x n square cells, which do not pass above the
diagonal, and is also the number of permutations of {1,--- ,n} that avoid the permutation
pattern 123. We refer to [10] for many different combinatorial interpretations of the Catalan
numbers.

In the past half-century, the divisibility of Catalan numbers has been widely discussed
by several mathematicians. It is well known that C,, is odd if and only if n = 2¥ — 1 for a
nonnegative integer k. Let p be a prime. Alter and Kubota [2] showed that p 1 C,x_; for
any nonnegative integer k, and that the subsequence of Catalan numbers which are divisible
by p and the subsequence of Catalan numbers which are not divisible by p form into blocks.

For any positive integer n, let a(n) be the highest power index of base 2 such that 22(%)
divides n, and d(n) be the sum of the digits in the base 2 expansion of n. It follows from
Kummer’s result on the order of a binomial coefficient [7] that a(C,) =d(n+1) — 1. It’s
worth mentioning that Deutsch and Sagan [4] proved this formula through a combinatorial
approach. One can easily deduce from this formula that C,, is odd if and only if n = 2 — 1
for some k € N. Deutsch and Sagan [4] also derived various interesting congruences modulo
3 for the Catalan numbers, central binomial coefficients and related sequences.



202 On super Catalan numbers

Inspired by Deutsch and Sagan’s results [4], Eu, Liu and the third author [5] studied
the nonzero congruences for Catalan numbers and completely determined C,, modulo 8 as
follows

1 ifn=0o0rn=1,
if n =29t +2¢ — 1 for some a > 0,

ifn=2%+242¢—1 for some a>b>c>0,

Cy =s (1.1)

if n=2%4+2b—1 for somea—2>b>0,

2
4
5 if n=2%—1 for some a > 2,
6
0

otherwise.

From (1.1), we see that C, #g 3 and C, #s 7 for any nonnegative integer n. Subse-
quently, Xin and Xu [11] gave an alternative proof of (1.1) by using a new recursion for
Catalan numbers, and further studied Catalan numbers modulo 2". It is worth mentioning
that Krattenthaler and Miiller [8] recently established some interesting congruences modulo
powers of 2 for Motzkin numbers and related sequences.
The super Catalan numbers named by Gessel [6] are given by
2m)\ (2n
stmm = L)),
( m )

for nonnegative integers m and n. Note that these numbers S(m,n) are always integral and
S(1,n)/2 coincides with the Catalan number C,,. We remark that these numbers S(m, n)
should not be confused with the Schréder—Hipparchus numbers, which are sometimes also
called super Catalan numbers. Some interpretations of S(m, n) for some special values of m
have been studied by several authors (see, for example, [1, 3, 9]). It is still an open problem
to find a general combinatorial interpretation for the super Catalan numbers.

The motivation of the note is to generalize Eu-Liu-Yeh congruence (1.1) and completely
determine S(m,n)/2 modulo 8 as follows.

Theorem 1. For nonnegative integers m and n with m +n > 0, we have

1 ifm=n=1or{m,n}=1{01},

2 ifm4n=2"4+2" for somea—2>b>0 and (m,n) =2 0

or m+mn = 29Tt 4+ 2% for some a > 0 and (m,n) = 1,

if m+4+mn=2% for some a >1 and m =5 0,

if m4n = 2%+ 2% +2¢ for somea >b>c>0, (1.2)

if m+4+mn=2% for some a > 2 and m =5 1,

I
[oe]
o Ot oA W

if m4n=2%42° for some a —2>b>0 and (m,n) =5 1

or m+mn = 29Tt 4+ 2% for some a > 0 and (m,n) = 0,

0 otherwise.
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Theorem 1 implies that S(m,n)/2 #g 7 for all nonnegative integers m and n with
m —+mn > 0. Letting m = 1 in (1.2) reduces to (1.1). Letting m = 0 in (1.2) leads us to the
following congruence regarding the half of the central binomial coefficients (27?)

Corollary 1. For any positive integer n, we have

1 ifn=1,

2 ifn=3 0rn=2“+2l’f07’somea—22b2 1,
if n = 2% for some a > 1,

if n = 2%+ 2% 4+ 2¢ for some a > b > c >0,

if n=2%+1 for some a > 2 orn =21 + 2% for some a > 1,

S O ke W

otherwise.

From Corollary 1, we deduce that %(27?) Zg 5 and %(27?) #g 7 for any positive integer n.
The rest of the paper is organized as follows. Section 2 is devoted to some notation and
preliminary results. We prove Theorem 1 in Section 3.

2 Preliminary results

Following Eu et al. [5], we first recall some notation. For any positive integer n, let [n]y :=
(nyny—1---ning)2 denote the sequence of digits representing n in base 2, i.e., n = n,2" +
Np_12" 14+ +n12+ng with n; € {0,1} and n,. # 0 for some integer 7. For convenience, we
let nyy1 = npio =---=0. Wedefine [(nyn,_1---ning)a| = n,2" +n,_12" "1+ +n12+nq
and d(n) = Y_,-, ni, which counts the number of the digit 1’s from ng to n,. Let 7(n) denote
the number of runs of digit 1’s in [n]s.

The following lemma computes the values of a(n!).

Lemma 1. (See Fu et al. [5, Lemma 2.1].) For any positive integer n, we have
a(n!) =n —d(n). (2.1)

For a statement S, we set x(S) = 1 if S is true, otherwise x(S) = 0. For positive integers
my,ma, -+ ,Mk,4q1,492,"** ,qi, W€ define

k k
my; o
E4 (3,1_[177%) = Z;X (W =4 3) 5
and

k l k l
E4 3,Hm1/Hq] = E4 (3,Hm,> 7E4 3, qu
i=1 j=1 i=1 j=1

In order to prove Theorem 1, we require the parity of E4(3,n!).

Lemma 2. (See Eu et al. [5, Lemma 2.2].) For any positive integer n, we have

E4(3,n!) =5 r(n) + ny + no. (2.2)
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In the sequence [n]s, let r1(n) be the number of isolated 1’s, zr(n) the number of runs
of digit 0’s, and zrq(n) the number of isolated 0’s. For ¢t = 3,5, 7, we define

k k
Eg (t,HTTh) = ZX(% =8 t),
i=1 i=1

and
k 1 k
Eg tyHmi/qu = By <taHmi>_E8 t]la )
i=1 j=1 i=1 j=1
where mqy,mao, - ,mg,q1,q2, - ,q are all positive integers.

We also require the parity of Fg(t,n!) for t = 3,5, 7.

Lemma 3. (See Eu et al. [5, Lemma 4.1].) For any positive integer n, we have

Es(3,n!) =3 r1(n) 4+ zr(n) + na + ny, (2.3)
Es(5,n!) =5 r(n) + zri(n) + na + ny, (2.4)
Es(7,n!) =3 r1(n) 4+ na + nq + ng. (2.5)
Let [n]a = (nyny—1---ning)a. Then [2n]a = (nyny—1---n1ne0)2. The following

equations are useful in the proof of Theorem 1: d(2n) = d(n),r(2n) = r(n),r1(2n) =
rl(n), (271)0 =0 and (271)1 =MN;—1 for 4 Z 1.

3 Proof of Theorem 1

Noting that
(2m)!(2n)!
(m +n)lm!n!’

S(m,n) =
by (2.1) we have
a(S(m,n)) = d(m+n) +d(m) + d(n) — d(2m) — d(2n)
=d(m+n). (3.1)

From (3.1), we deduce that S(m,n) is even for nonnegative integers m and n with
m + n > 0. We shall distinguish four cases to prove Theorem 1.

Case 1 d(n+m) > 4. In this case, n +m = 2% + 29 4 ... 4+ 2% for some a; > as >
-+->a; > 0and ¢t > 4. From (3.1), we deduce that S(m,n)/2 =0 (mod 8).

Case 2 d(n +m) = 3. In this event, n +m = 2% + 2> 4 2¢ for some a > b > ¢ > 0. By
(3.1), we have S(m,n)/8 is always an odd integer, and so S(m,n)/2 =4 (mod 8).
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Case 3 d(n+m) = 2. In this case, m +n = 2% + 2% for some a > b > 0. From (3.1), we
deduce that S(m,n)/4 is always an odd integer. By (2.2), we have

E4(3,5(m,n))

oo R

m + n)lm!n!
=5 r(2m) +r(2n) —r(m+n) — r(m) — r(n)
+ (2n)1 + (2n)o + (2m)1 + (2m)o — (n+m)1 — (n+m)o — (m)1 — (M)o — (n)1 — (n)o

= r(m+n) + (m+n)1 + (m+n)o + (m)1 + (n)1. (3:2)
Observing that

[+ 10)a] + [(-++10)a] = |(- - 00)a],

[(-+-00)2] + [(--- 10)2| = [(--- 10)a],

[(++-00)2| + | (- 00)2| = [{- - 00)],

we get (m+n)1+ (m+mn)o+ (m)1 +(n)1 =2 0 for (m,n) =5 0. On the other hand, noticing
that

|(-+-01)| + [{-+-00)3| = |{---01)s],
|(-+ - 11)| + (- 00)2| = |({--- 11)s],
|(-+-01)| + (- 10)a| = |({--- 11)a],
|(-- - 11)| + (- 10)a| = |{-- - O1)s],
|(---01)| + (-~ 01)a| = |{--- 10)a],
[(---01)g| 4 (-~ 11)| = |(--- 00)q],
(- 1L)o| + |-+ 11)o| = | (- - 10)a],

we obtain (m +n); + (m +n)o + (m)1 + (n)1 =2 1 for (m,n) =2 1.

Furthermore, we have r(m+n) =2fora—2>b>0and r(m+n)=1fora—1=5>0.
It follows that E4(3,S5(m,n)) =2 0 if and only if a =2 > b > 0 and (m,n) =3 0 or
a—1=b2>0and (m,n) =2 1, and E4(3,S(m,n)) =2 1 if and only if a —2 > b > 0 and
(myn) =2 lora—1=>>0and (m,n) =2 0. Combining the above with the fact that
S(m,n)/4 =4 (—1)FaBS50mn) " we get

2 ifm+mn=2%+2bfor somea—2>b>0 and (m,n) =20

S(m,n) or m+n = 2Tt + 2% for some a > 0 and (m,n) =, 1,

2 6 ifm+n=2“—|—2bforsomea—22b20&nd(m,n)521

or m +n = 2471 4 2¢ for some a > 0 and (m,n) =3 0.
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Case 4 d(n+m) = 1. In this event, m + n = 2% for some a > 0 and S(m,n)/2 is always
an odd integer.

If a = 0, then {m,n} = {0,1}, and we have S(0,1)/2 = S(1,0)/2 = 1.

If a =1, then m =n =1 or {m,n} = {0,2}, we have S(1,1)/2 = 1 and 5S(0,2)/2 =
5(2,0)/2 =3.

If a =2, then m =n =2,{m,n} = {1,3} or {m,n} = {0,4}. It is trivial to check that
S(2,2)/2 = 3,5(1,3)/2 = S(3,1)/2 = 5 and S(0,4)/2 = S(4,0)/2 =5 3.

In what follows, we assume a > 3. By (2.3), we have

Eg(3,5(m,n)) =2 r1(2m) + r1(2n) — ri(m+n) —ri(m) — r1(n)
+ zr(2m) 4+ zr(2n) — zr(m +n) — zr(m) — zr(n)
+ (2m)o + (2n)o — (m +n)o — (m)o — (n)o
+ (2m)a + (2n)g — (m+n)s — (Mm)2 — (n)s. (3.3)

Since both m and n have the same parity, we get zr(2m) + zr(2n) — zr(m) — zr(n) =2 0
and (m +n)o + (m)o + (n)g =2 0. Moreover, we have ri(m +n) = 1,zr(m+n) = 1 and
(m 4 n)g = 0. It follows from (3.3) that

Eg(3,8(m,n)) =2 (m)2 + (n)2 + (m)1 + (n)1. (3.4)
By (2.4), we have
Es(5,S(m,n)) =2 r(2m) +r(2n) —r(m+n) —r(m) — r(n)
421 (2m) + 211 (20) — 2 (m 4 1) — 2r(m) — 21 (n)
+ (2m)o + (2n)o — (m + n)o — (M)o — (n)o
) ()2
= 14 211 (2m) + 2r1(20) + 21 (m) + 2r1 (n)

+(2m)a+ (2n)s — (Mm+n)2 — (m)g —

+ (m)a+ (n)2 + (M)1 + (n)1, (3.5)

where we have used the facts that 7(m +n) = 1 and zr;(m +n) = 0.
Furthermore, by (2.5) we have

Es(7,5(m,n)) =3 r1(2m) + r1(2n) — ri(m +n) — ri(m) — r1(n)
+ (2m)o + (2n)o — (m +n)o — (M)o — (n)o
+(@2m)1 + (2n)1 = (m+n)1 — (m)r — (nh
+ (2m)s + (2n)2 — (M +n)2 — (M)2 — (n)2
= 1+ (m)2 + (n)2. (3.6)

Since m + n = 2% for a > 3, the base 2 addition |[{(m,my_1 - mamimg)a|
+ [(nyny—1 - naning)z| = [{(M+n)w(Mm +n)w—1 - (Mm+n)2(m+n)1(m +n)o)2| belongs
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to one of the following five cases:

[(-++000)2] + [(- - - 000)2| = |{- - - 000)2], (3.7)
(- +100)2] + |(- - - 100)2| = |{- - - 000)2], (3.8)
(- 110)2] + [(- - - 010)2] = |{- - - 000)2], (3.9)
[(--001)a| 4 |(--- 111)a] = |{- - - 000)3], (3.10)
(- 011)a| + [{- - 101)5| = |{- - 000)s]- (3.11)

)

By using (3.4)—(3.6), we list the parity of Es(3,S(m,n)), Es(5,S(m,n)), Es(7,S(m,n)
and the values of S(m,n)/2 modulo 8 with respect to the five cases (3.7)-(3.11) in the
following table.

(3.7 (3.8) (3.9) (3.10) (3.11)
Eg(3,S(m,n)) | even even odd even  even

(, S(m,n)) odd odd even odd odd

S (m n)) odd odd even even  even

s(7,
S(m n)/2mod 8 | 3 3 3 5 5

Here we evaluate S(m,n)/2 modulo 8 based on the parity of Fg(3,5(m,n)), Es(5,5(m,n)),
FEg(7,5(m,n)), and the facts that S(m,n)/2 =g 3Fs(3:5(mn)) 5 5Es(5,8(mn)) 5 7Es(7,S(m.n))
and 32 =52 =72=1 (mod 8).

From the above table, we deduce that

S(m,n) |3 if m +n = 2 for some a > 3 and m =5 0,

2 5 if m+n=2%for some a > 3 and m =5 1.

Finally, combining Cases 1-4, we complete the proof of Theorem 1.
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