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The mass process for continuous spatial Galton-Watson non-local
branching processes
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Abstract

The main purpose of this paper is to show that the particle counting process of a
continuous spatial non-local branching process is actually a Galton-Watson process in
continuous time. We do this via a general principle of transference which is perhaps
useful for more situations.
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1 Introduction

Branching processes are stochastic models used to describe populations where each individ-
ual gives rise to a random number of offspring.

Starting from the classical Galton-Watson process, which was originally introduced to
model extinction probabilities in family names, the theory has been extended to include
continuous time and spatial motion.

In this paper we review some basic definitions and the ingredients to describe, formulate
and prove the main result.

The main purpose of this note is to show that the mass process of a spatial non-local
branching process is a continuous time Galton-Watson process.

We introduce a transfer principle that connects the spatial particle process with the
pure branching process, and we present the proof of the main result.

In Section 2 we present the main processes, the Galton-Watson in discrete and contin-
uous times and the non-local branching processes with spatial motion. In Section 3, we
introduce the main notation and basic results. In Section 4 we discuss the main results. In
the final Section 5 we discuss some extensions.

One of the main reasons of this note is the fact that a similar property holds for branching
processes in continuous time on the space of measures which is stated in [13, page 95].

2 The Galton-Watson and branching processes

2.1 The Galton-Watson process in discrete time

The classical Galton-Watson process is defined as follows. An initial individual (the parent)
upon death produces a random number of children. If we denote the number of children by
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Z, then

Z ∼
(

0 1 2 . . .
p0 p1 p2 . . .

)
.

Each child then behaves independently and identically, giving birth to a random number
of offspring with the same distribution. Let Xt be the population size at generation t.
Formally, we define:

1. X0 = 1,

2. Xt+1 =

Xt∑
i=1

Zt,i, where Zt,i are independent copies of Z.

Figures illustrating various aspects of the Galton-Watson process are given in Figures 1.

Generation 0 1 2 3 4 5

Figure 1: Galton-Watson process illustration.

2.2 Pure Galton-Watson process in continuous time

In the continuous-time version, an initial parent lives for an exponentially distributed time
Exp(a) and, upon death, gives birth to a random number of children with the same distri-
bution as in the discrete model. Each child then independently lives an Exp(a) time and
gives birth to offspring upon death. The population at time t, denoted by Xt, evolves as a
continuous-time pure branching process. For a graphical representation see Figure 2.

Pure branching processes have been recently used in [8] for solving a nonlinear Dirichlet
problem (with discontinuous boundary data) related to the non-local branching processes.

2.3 Galton-Watson branching with spatial motion

In the spatial non-local branching process, in addition to the branching mechanism described
above, each particle moves in space according to a Markov process. More precisely:

• An initial parent lives an exponential time Exp(a) and moves in space according to a
given Markov process. Upon death, it gives birth to a random number of children

Z ∼
(

0 1 2 . . .
p0 p1 p2 . . .

)
.
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t

Figure 2: Representation of the time continuous pure branching process or simply Galton-
Watson in continuous time. Each particle lives for an exponential amount of time and at
the death gives birth to a number of off-springs, each of them following the same dynamic.

• Each child independently lives an Exp(a) time and moves according to the same
spatial Markov process, and gives birth to offspring upon death.

• Let Yi,t denote the position of the ith particle at time t, and define the particle process
as

Xt =
∑
i

δYi,t
,

where δYi,t is the Dirac measure at Yi,t.

A graphical image is in Figure 3.

3 Basic results and notations

Let E be a Lusin topological space (i.e., E is homeomorphic to a Borel subset of a compact
metric space) denote the environmental space in which the particles move and let L be the
generator of the spatial Markov process on E. We denote the sigma algebra of Borel sets
by B(E).

For a topological space X and a class G ⊂ C(X ) we denote by σ(G) the sigma algebra
of all Borel measurable sets of X of the form G−1(A) with A ∈ B(R) with G ∈ G.

By semigroup on C(U) we mean a family of positive operators (Pt)t≥0 : Cb(U) → Cb(U)
(Cb(U), the space of continuous and bounded functions) or

(Pt)t≥0 : C0(U) → C0(U)

(where C0(U), the space of continuous functions vanishing at infinity) such that P0 = Id
and Pt+s = PtPs for t, s ≥ 0. We say that (Pt)t≥0 is C0 if t → Ptf is continuous for each
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Figure 3: Branching process with spatial movement. The black dots represent the birth
points of the particles. The generations are represented in the decreasing size of the particles.
The colors correspond to the generation. The first generation is depicted in green, the second
in blue, different nuances and the third in red.

f with respect to the uniform norm. We should point out that C0 semigroups on C0(U) is
known in the literature as Feller semigroups.

The generator L of the semigroup is defined in the usual way as

Lf = lim
t→0

Ptf − f

t

and the domain is the set of all f for which this limit exists. It is standard (see [14]) that
this is a dense subspace of Cb(U) (or C0(U)).

The branching mechanism is given by

Ψ(s) =
∑
k≥0

pks
k

which is the same as the generating function of the offspring distribution.
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We consider the space of finite atomic measures

Ê =

{
µ =

n∑
i=1

δxi
: n ∈ N, xi ∈ E

}
∪ {0},

endowed with the topology of weak convergence.
Assume that (Pt)t≥0 is the semigroup generator of a spatial Markov process. The particle

process is defined as

Xt =
∑
i

δYi,t
,

and is characterized by the generator given by L (see for instance [11, Section 1.2])

(LFh)(µ) =

〈
µ,

Lh+ a(Ψ(h)− h)

h

〉
Fh(µ), (1)

where each function h : E → (0, 1) induces the test functions of the form

Fh(µ) = e⟨µ,log(h)⟩,

with the notation

⟨µ, h⟩ :=
∫

h dµ =

n∑
i=1

h(xi) if µ =

n∑
k=1

δxi
.

The transition semigroup is determined by the Laplace transform via∫
e⟨ν,log(h)⟩Pt(µ, dν) = e⟨µ,log(Vth)⟩ (2)

or with different notations,

(PtFh)(µ) = FVth(µ) for t ≥ 0 (3)

where for h : E → (0, 1), Vth is the solution of{
∂Vt

∂t = LVt + a(Ψ(Vt)− Vt)

V0 = h.
(4)

For references the reader can consult [11, 3, 2, 4] and for more details [13, Chapter 7].

3.1 The Case of pure branching

If we set E = O = {o}, then the process reduces to the pure branching process described
earlier. In particular we can describe also this case as follows. In the first place the space
E = O, a single point. Then functions h : O → (0, 1) are completely characterized by a
single constant s ∈ (0, 1). The generator L is simply Lf = 0 for any f . Furthermore, we
also get that Ô = N is naturally identified with the set of natural numbers. In addition, we
have that for µ = nδo, then

Fs(n) = exp(⟨log(s), n⟩) = sn.
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On the other hand, the generator of this semigroup is given by

(KFs)(n) = na
Ψ(s)− s

s
Fs(n) (5)

In particular, the semigroup (Qt)t≥0 of this generator is given by

(QtFs)(n) = Fvs(t)(n) (6)

and it must solve the Cauchy problem

∂vs
∂t

(t) = a(Ψ(vs(t))− vs(t)) with vs(0) = s. (7)

This equation has indeed a unique and well-defined solution for all t ≥ 0 and any s ∈ (0, 1)
([6, 5, 9]). These were detailed and thoroughly studied in [7] in a more general framework.

4 The main result

Pure branching processes have been recently used in [8] for solving a nonlinear Dirichlet
problem (with discontinuous boundary data) related to the non-local branching processes.

Let the mass process be defined by

|Xt| := ⟨Xt, 1⟩,

which is the total number of particles at time t. The following result connects the spatial
process to the classical pure branching process.

Theorem 4.1. If (Xt)t≥0 is generated by a C0 semigroup (on Cb(Ê) or C0(Ê)), then the
mass process |Xt| is a pure Galton-Watson process in continuous time.

One of the main ingredients of the proof is the transfer principle outlined below which
is of independent interest.

Before we give the statement of the transference principle, we state a uniqueness Lemma
which is the key in the proofs.

Lemma 4.2. Assume (Pt)t≥0 is a C0 semigroup on some Banach space X with the gener-
ator L and domain D(L). Then the Cauchy problem

x′(t) = Lx(t) with x(0) = x0 ∈ D(L)

has a unique solution.

Proof. In the first place, if we take y(t) = Ptx0, we know that (see for instance [14, Theorem
3, Section 3, Chapter IX])

d

dt
Ptx0 = LPtx0 = PtLx0.

for any x0 ∈ D(L).
Fix now some time t > 0 and consider

z(s) = Pt−sx(s).
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Then,

z′(s) =

(
d

ds
Pt−s

)
x(s) + Pt−sx

′(s) = −Pt−sLx(s) + Pt−sLx(s) = 0.

Therefore z(t) = z(0) which means that x(t) = Ptx0, thus the uniqueness.

The following result has some similarities to [10, Theorem 10.25 Chapter 6].

Proposition 4.3. Assume we have a probability space (Ω,F , (Ft)t≥0, p) and

• two topological spaces U , V and ϕ : U → V a continuous map;

• a C0 semigroup (Pt)t≥0 on Cb(U) (or C0(U)) with generator L;

• G ◦ ϕ ⊂ D(L);

• a Markov process (Xt)t≥0 on U with generator L;

• a C0 semigroup (Qt)t≥0 on Cb(V ) (or C0(V )) and its generator K on V .

• G ⊂ D(K).

Under these assumptions, if G ◦ ϕ ∈ D(L) and

L(G ◦ ϕ) = K(G) ◦ ϕ

for all G ∈ G where

G ⊂ Cb(V )(orC0(V )) such that σ(G) = B(V ) and Qt(G) ⊂ G, ∀t ≥ 0,

then the process Yt = ϕ(Xt) is a Markov process with the semigroup (Qt)t≥0 and generator
K.

Proof. The most important observation is that

Pt(G ◦ ϕ) = (QtG) ◦ ϕ.

Indeed, to see that this is true, notice that

d

dt
Qt(G) ◦ ϕ = (KQt(G)) ◦ ϕ = L(Qt(G) ◦ ϕ)

which shows that xt = Qt(G) ◦ ϕ solves the equation

x′(t) = Lx(t) with x(0) = G ◦ ϕ.

Therefore, from the uniqueness Lemma 4.2, we get that

Qt(G) ◦ ϕ = Pt(G ◦ ϕ).

Furthermore, for any G ∈ G,

E[G(Yt)|Fs] = E[(G ◦ ϕ)(Xt)|Fs] = Pt−s(G ◦ ϕ)(Xs)

= Qt−s(G)(ϕ(Xs)) = Qt−s(G)(Ys)

which, because σ(G) = B(V ) and monotone class theorem, extends the above relation for
all continuous and bounded G ∈ Cb(V ) (or G ∈ C0(V )), thus the conclusion.
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Proof of Theorem 4.1. Consider the case where O = {0} and the spatial motion is trivial,

i.e., L ≡ 0. On Ô, choose the test functions

G(ν) = exp (⟨ν, log(s)⟩)

with the identification h(0) = s, where s ∈ (0, 1).

According to the generator definition from (5), K on Ô acts as

(KG)(ν) =

〈
ν,

a(Ψ(s)− s)

s

〉
G(ν).

Define the mapping ϕ : Ê → Ô by

ϕ(µ) = ⟨µ, 1⟩δ0.

From (1), F (µ) = exp(⟨µ, log(h)⟩) defined by h : E → (0, 1) on Ê determines the generator
by

(LF )(µ) =

〈
µ,

Lh+ a(Ψ(h)− h)

h

〉
F (µ).

Define G as the set of all functions of the form

G(ν) = exp(⟨ν, log(h)⟩) with h : O → (0, 1).

The semigroup Qt leaves the class G invariant.
It is elementary to check that G generates the sigma algebra of Borel sets of Ô.
Now, for h(o) = s, then

(G ◦ ϕ)(µ) = exp (⟨µ, log(s)⟩) ,

and furthermore,

L(G ◦ ϕ)(µ) =
〈
µ,

Ls+ a(Ψ(s)− s)

s

〉
G(ϕ(µ))

=

〈
µ,

a(Ψ(s)− s)

s

〉
G(ϕ(µ))

= K(G)(ϕ(µ)).

This verifies the hypothesis of the transfer principle and hence proves that the mass process
|Xt| behaves as a pure branching process.

Remark 4.4. The condition in Theorem 4.1 states that the proceess Xt is a C0 process.
This is true for the Galton-Watson in continuous time. The argument is based on the fact
that the semigroup Qt sends exponential functions of the form n → sn into functions of the
form n → vs(t) (cf. (7)). It is not hard to check that vs(t) > 0 for s ∈ (0, 1) and t > 0, thus
by Stone-Weierstrass, the set of functions n → sn spans a dense set in the set of functions
vanishing at infinity, which gurantees that Qt is C0 on the space C0(Ô) = C0(N).
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For the spacial process, we have for instance from [13, Theorem 2.5] that if E is compact
and the solution Vth to (4) preserves positive functions, the process Xt is Feller, thus C0.

However, if the semigroup Vt defined by (4) is a C0 semigroups on C0(E), then it is not
too difficult to show with the same arguments as for the Galton-Watson in continuous time
that the semigroup Pt defined by (3) is also C0 on C0(Ê).

It is not clear if the Markov spatial process running the particles in space is C0 on C0(E)
then the process Xt follows to be a C0 process as well.

The main consequence of Theorem 4.1 is the non-extinction result.

Corollary 4.5. Let m = E[Z] =
∑

k≥1 kpk be the mean of the offspring distribution. Then

• if m ≤ 1, then the extinction of the spatial Galton-Watson occurs with probability 1,

• if m > 1, the population has non-zero probability of non-extinction.

In other words, the extinction of the spatial process is dictated entirely by the distribution
of the offspring.

This follows from the main results relating the Galton-Watson process in continuous
time to the Galton-Watson in discrete time. For instance, one such reference is [1, 12].

5 Extensions

The main result can be extended to the case of superprocesses defined on some space E
and realized as processes on M(E), the space of measures on E. This should be contrasted

to the space of point measures from Ê.
For superprocesses X̂ on M(E), we can also look at the process |X|t = ⟨X̂t, 1⟩ as a

process on [0,∞). In a very similar fashion for non-local branching processes, if we take
the map ϕ : M(E) → [0,∞), by ϕ(µ) = ⟨µ, 1⟩, and if the generators of the superprocess
map into the generator of a process on M(R) we can use the same principle to show that
the mass process is a branching process on [0,∞).
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