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Abstract. The article presents the construction of some real functions
which have the intermediate value property and other interesting proper-
ties. A new approach in finding a discontinuous solution for the Cauchy
functional equation which has the intermediate value property is presented
in the second part, along with a theorem regarding the structure of the so-
lutions of the same equation in terms of solutions with intermediate value
property.
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1. INTRODUCTION

In this article we construct some unusual and unintuitive functions
which have interesting properties. We will concentrate our attention on the
intermediate value property. In the first part we prove the existence of func-
tions which map any open real interval onto a certain subset of R. Next we
present Sierpiniski’s theorem which states that every function f: R — R can
be written as the sum of two functions with the intermediate value property,
and a theorem regarding the existence of a function f : [0,1] — [0,1] for
which there exist non-empty sets A, B which partition the interval [0, 1] with
f(A) € B and f(B) C A. In the third section we give a very simple exam-
ple of a function which is a discontinuous solution for the Cauchy functional
equation and has the intermediate value property. In the end we present
a variant of Sierpinski’s theorem for the solutions of the Cauchy functional
equation.
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Definition 1.1. If f : I — R is a function, and I C R is an interval, f
has the intermediate value property if for any a,b € I, a < b and for any A
between f(a) and f(b), there is c € (a,b) such that f(c) = \.

In applications, one of the following equivalent definitions is easier to
use:

e f has the intermediate value property if and only if f(.J) is an interval
for any interval J C I.

e f has the intermediate value property if and only if f([c,d]) is an
interval for any ¢,d € I, ¢ < d.

Definition 1.2. If f: I — R is a function, and I C R is an interval, f has
the weak intermediate value property if f(J) is an interval, for any interval
JcClI.

For z,y € R define x ~ y if and only if z — y € Q. This is obviously an
equivalence relation and for any € R we will denote by [z] = {y € R: y ~ z}

the equivalence class which contains z. It is obvious that R = U [x] and

z€R
y ¢ [r] = [x] N [y] = 0. In the following, we denote by A = {[z] : € R} the

set of the equivalence classes, and we will find its cardinal number. In the
sequel, we denote N = cardR.

Proposition 1.1. cardA = cardR.

Proof. Set C = cardA. Since every equivalence class has X elements, taking
cardinals in the relation R = U [x], we obtain
[z]eA

N=CRg=C,

since C is infinite. O

2. SOME STRANGE FUNCTIONS WITH INTERMEDIATE VALUE PROPERTY

We state some results about the existence of some interesting real func-
tions which have the intermediate value property.

Theorem 2.1. There exist non-constant functions f : R — R which map
any open interval onto a closed one.

Another surprising result is given in the following

Theorem 2.2. There exist functions f : R — R which have the intermediate
value property and take any real value in any neighborhood of any point in

R.

A slight generalization is the following
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Theorem 2.3. Given ' C R, there exists a function f: R — R such that f
maps any open interval onto T.

Proof. Because cardT < cardR = card.A, there exists a surjection ¢ : A — T.
Considering the function f : R — R, f(x) = ¢([z]) we have the requested
function. g

Remark 2.1. Note that if cardT > 1, any function which satisfies the con-
dition of Theorem 2.3 is a function which has intermediate value property
and is everywhere discontinuous.

If we denote £ = {f : R - R} and D = {f € £ : f has the intermediate
value property} there are not many obvious set relations between £ and D
(apart from the obvious D C £). Still, if we consider for two subsets A, B of
& the operation A+ B={f+g¢g: f€ A,g € B} we will find that D+D = £.
This result is due to Wactaw Sierpinski.

Theorem 2.4. (Sierpinski) For any function f : R — R there exist two
functions f1, fo : R — R having the intermediate value property and being
discontinuous at any point in R such that f = f1 + fo.

The proof of Sierpinski’s theorem uses the equivalence relation defined
above and the set of equivalence classes A. The proof is somewhat classical,
and will not be included here. Proofs can be found in [4], [5]. Also, the ideas
used in proving Theorem 3.3 can easily lead to the proof of Sierpinski’s theo-
rem. The proof of the above theorem inspired the following result, proposed
as a problem in a Romanian mathematical contest!) in 2003:

Let us define
F={f:[0,1] = [0,1] : there exist non-empty sets A, B C [0, 1]
with ANB=0,AUuB=10,1], f(A) C B, f(B) C A}.
Study if F contains continuous functions, functions which have antideriva-
tives, and functions which have the intermediate value property.

The answer to the first two questions is obvious. If a function
f € F is continuous or has antiderivatives, then the function g(z) = f(z)—z,
Va € [0,1] has antiderivatives. It is well known that any function which
has antiderivatives necessarily has the intermediate value property. Since
g(0)g(1) < 0 and ¢ has the intermediate value property, we conclude that
g has at least one zero in [0,1]. This yields that f has a fixed point which
contradicts f € F.

The third part is way harder than the first two, since in fact there exists
a function f € F with the intermediate value property, and the task becomes
finding such an example. The fixed point argument used before does not
work in the case of functions with the intermediate value property, since it

b ,, Iraian Lalescu“
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is known that there exist functions f : [0, 1] — [0, 1] having the intermediate
value property and without fixed points (see for example [6]).

Theorem 2.5. There exist functions f € F having the intermediate value
property.

Proof. We choose a bijection ¢ : A — R and denote Y = ¢~1((00,0]),
Z = ¢ 1((0,00)). Take A= {z €[0,1]:[z] €Y}, B={x€[0,1]:[z] € Z}.
A and B are disjoint and non-empty because Y and Z are disjoint and non-
empty. We have Y UZ = A, s0 AUB = {z € [0,1] : [z] € A} = [0,1].
Because A and B contain all the elements from [0, 1] which are in the same
equivalence class, A and B are dense in [0, 1].

From their definitions, cardY = cardZ = cardA = cardB = X. There-
fore, we can find two bijections p : Y — B and v : Z — A. We define the
function f:[0,1] — [0, 1] by

[, zea
/(@) {y([x}), x € B.

From the definition of f and of the sets A, B,Y, Z we find that f(A) C B
and f(B) C A. Let’s prove that f has the intermediate value property. We
take I an interval contained in [0,1]. Then I intersects all the classes from
A (because any of these is dense in R), which means that I intersects all the
classes from Y and Z. Hence f(I) = u(Y)Uv(Z) = BUA = [0,1]. Therefore
f € F and f has the intermediate value property. O

From the theorem above we have the following

Corollary 2.1. Ifa,b € R, a < b then we can find functions f : [a,b] — [a,b]
which have the intermediate value property and have no fired points.

3. CAUCHY FUNCTIONAL EQUATION AND THE INTERMEDIATE VALUE
PROPERTY

A function f: R — R satisfies the Cauchy functional equation if

(€) flx+y)=flz)+ f(y)

holds for any =,y € R.

Here are a few facts about the Cauchy functional equation:

i) A function which satisfies (C) also satisfies f(qz) = ¢f(z), V¢ € Q,
Vel

ii) Any function of the form f(z) = ax, a € R, satisfies the equation
(C). We will call these functions the trivial solutions of equation (C). It is
well known that any continuous solution of the equation (C) is trivial.

iii) If we consider R as vector space over Q, then, according to (C) and
i), f is a linear map. This implies that f is well and uniquely defined if we
know its values on a Q-basis of R.
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The proof of the above facts is straightforward, and for any details we
refer the reader to [2], pg. 193. The next result allows us to talk about the
nontrivial solutions of (C).

Proposition 3.1. There ezist nontrivial solutions of the equation (C).

Proof. Using iii) we can take a basis B which contains 1 and consider
f) =1, f(b) =0, Vb € B\ {1}. Thus f(z) will be the coefficient of 1
in the representation of z in the basis B. Because f(R) = Q, f is not a
trivial solution for (C). O

Once we established the existence of nontrivial solutions for (C), we can
give the following theorem which states that the nontrivial solutions of the
Cauchy functional equation have an unusual graph:

Theorem 3.1. If f is a nontrivial solution for (C), then its graph
Gy ={(z,y) eR* 1y = f(2)}

is everywhere dense in R2.

Proof. Assume that f is a nontrivial solution of (C) such that G is not
dense in R2. Then there exist a,b,c,d € R such that D = (a,b) x (c,d) and
D NGy =0. We prove now that at least one of the following is true:

i) f(z) <e Va € (a,b);

ii) f(x) >d, Vz € (a,b).

Assume that there exist z,y € (a,b) such that f(z) < c and f(y) > d.
Then there exist q,r € Q4 with ¢+ r = 1 such that

flgz +ry) =qf(x) +rf(y) € (¢, d),

because [0,1]NQ 3¢t — (1 —t)f(z) + tf(y) maps densely into [f(x), f(y)] D
D (¢,d). This contradicts the fact that D NGy = 0.

Without loss of generality assume that i) holds. There exist § > 0 and
h € R such that (—d,9)+h C (a,b). Using the additivity of the function f and
i) we obtain that f has an upper bound on (-4, ). Because f(z) = —f(—z),
for every x € R we conclude that f is bounded on (-9, d).

Because of the additivity, continuity in 0 is equivalent to global con-
tinuity, therefore f is not continuous in 0. Then there exists a sequence
(yn) which tends to 0 such that f(y,) — £ € (0,00] (if £ < 0, then replace
(yn) by (—yn)). Because almost all terms of the sequence are in (—9,9),
we deduce that (f(y,)) is bounded. There exists ng with the property that
f(yn) > min{¢/2,1} whenever n > ng. Take m € N. Then there exists
an integer k,, > max{ng, km—1} such that |myy, | < 0. For k,, we have

fomyg,,) = mf(yg,,) > 'm7 This procedure builds a subsequence (y,,) of

(yn) for which f(yg,,) = oo, which contradicts the fact that f is bounded on
(=9,0). O
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Remark 3.1. We can see from the results above that the solutions of the
equation (C) have a common property: If f is a solution for (C), then f has
the weak intermediate value property, that is, f(J) is an interval whenever
J C I is an interval.

Thinking about the connection between the solutions of the Cauchy
functional equation and the intermediate value property, we may ask a few
questions:

1) Does every solution of the Cauchy functional equation have the in-
termediate value property?
Answer: No. An example occured in the proof of Theorem 3.1.

2) Since continuity forces a solution to be trivial, we may ask if the
intermediate value property forces a solution to be trivial.
Answer: No. An example can be found in the next theorem.

Theorem 3.2. There exist nontrivial solutions for equation (C) which have
the intermediate value property.

Proof. We use iii) and choose a basis B of R over Q which contains 1. Take
a bijection ¢ : B\ {1} — R*, and then define f(1) = 0 and f(b) = ¢(b),
Vb e B\ {1}.

It is clear that f(q) = 0, Vq € Q. Considering the equivalence relation
~ we get that = € [y] = f(z) = f(y) + f(x —y) = f(y). Let y € R. Then
we can find b € B such that f(b) = ¢(b) = y. We take by € [b] N I which
is non-empty. We have f(by) = f(b) = y, so y € f(I), and because y was
chosen arbitrarily, it follows that f(I) = R. Therefore f has the intermediate
value property. We see that f(Q) = {0} and f(R) # {0}, which proves that
f is a nontrivial solution for (C). O

The example in the last theorem gives us a solution of the Cauchy
functional equation which is non-trivial, has the intermediate value property
and is surjective. The next result provides an interesting connection between
these concepts.

Proposition 3.2. If f is a solution of the Cauchy functional equation which
is surjective but not injective, then f has the intermediate value property.

Proof. First note that f must be non-trivial. If f would be trivial, then
f(x) = cx for some ¢ € R. The hypothesis f surjective proves that ¢ # 0,
but then f is injective, a contradiction.

Since f is not injective, there exists b # 0 such that f(b) = 0, and using
the properties of f we have that f(gb) = 0 for every ¢ € Q.

Pick an interval I C R and a value yg € R. Since f is surjective, there
exists zg € R such that f(zg) = yo. Since the set {xo+bq : ¢ € Q} is dense in
R, there exists gg such that zg+ bgy € I. Therefore f(xo+ bgo) = f(x0) = Yo
and yo € f(I). This proves that f(I) = R. Since this happens for every
interval I, it follows that f has the intermediate value property. ]
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If we denote
Ec={f:R—=R: fis asolution of (C)}

and
De ={f € Ec : f has the intermediate value property},

then an analogous result to the Sierpinski theorem holds, namely Do+ Do =
= &c. The theorem below can be found in [3], problem P.3.23, pg. 106,
and was pointed out to me by the authors. The solution presented here is a
simplified version of the solution given in the reference.

Theorem 3.3. For every solution f of the Cauchy functional equation there
exist two non-trivial solutions f1, fo of the same equation such that fi and
fo have the intermediate value property and f = f1 + fo.

Proof. Consider a Q-basis B of R and by,bs € B. Since card(B \ {b1,b2}) =
cardR there exists a bijection g : R — B\ {b1,b2}. Set A = g((—0o0,0))
and C = ¢([0,00)). Therefore we have partitioned B \ {b1,b2} into two
uncountable sets A and C. This allows us to construct another two bijections
g1:A—=Rand gs: C = R.

Now we can define two functions f1, fo with the required properties. As
we have already noticed, a solution of the Cauchy functional equation is well
and uniquely defined if we know the values of the solution on a Q-basis of R.
We can define f; and f5 by their values on B as follows:

(0, b=1"b;

) f(b2), b=by

f1(b) = a (), be A

() —ga(b), beC

and

f(b1)7 b:bl

o, b= by

PO=Y 1) - guv), bea

gg(b), beC.

Note that fi, fo are solutions of the Cauchy functional equation. More-
over, it is easy to see that f1(b) 4+ f2(b) = f(b) for every b € B, which implies
hL+f=T

Since g1 is a bijection from A to R it follows that f; is surjective, and
because f(b1) =0, by # 0 we see that f; is not injective. Using Proposition
3.2 we conclude that f; is nontrivial and has the intermediate value property.
By a similar argument f> is nontrivial and also has the intermediate value
property. ]



8 ARTICOLE

Acknowledgments. The author thanks to the referee for his careful
reading of the manuscript and his helpful suggestions concerning the aspect
and content of this paper.

REFERENCES

[1]  N. Jacobson, Lectures in Abstract Algebra, vol. II, Linear Algebra, D. Van Nostrand
Company, Inc., 1953.

[2] A. B. Kharazishvili, Strange Functions in Real Analysis, Chapman & Hall/CRC,
2006.

[3] M. Megan, A.L. Sasu, B. Sasu, Calcul diferential in R prin exercitii si probleme, Ed.
Mirton, Timisoara, 2003.

[4] M. Megan, Bazele Analizei Matematice, Ed. Eurobit, Timisoara, 1997.

[6] W. Sierpiniski, Sur une propriete des fonctions reelles quelconques, Matematiche
(Catania) 8(1953), 43-48.

[6] Z. Grande, An example of a Darboux function having no fized points, Real Anal.
Exchange 28(2002), 375-380.

Arithmetical Properties of the Image of a Polynomial with
Integer Coefficients

VLAD MATEIY

Abstract. In this article we present some results on the set of prime divi-
sors of the numbers in the image of a polynomial with integer coefficients,
and we look at the image of such polynomials restricted to the set of prime
numbers.

Keywords: Polynomials with integer coefficients.
MSC: 11C08, 11T06, 13B25

In the first part of this article we present some results on the set of prime
divisors of the numbers in the image of a polynomial, which are classical but
worthy of being noted. In the second section, which is our main contribution,
we look at the image of the polynomials restricted to the set of prime numbers.

The most famous problem motivating the study of the set of prime
divisors of the numbers in the image of a polynomial is a conjecture that states
that if we have given an irreducible polynomial with integer coefficients and
the greatest common divisor of the numbers in the set is 1, then this set must
contain at least one prime number. This conjecture is due to Bunyakovsky.
Schinzel generalized the conjecture of Bunyakovsky to a finite number of
polynomials, asking if they could take simultaneously prime values.

An interesting illustrative example of a connected problem with this
one is the famous Euler polynomial n? +n + 41 which takes prime values for
n=20,...,39. It is natural to ask whether for arbitrary N we could find a

DUniversity of Cambridge, Cambridge, UK.
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polynomial which takes prime values for at least N consecutive values. This
is also a conjecture.

1. SCHUR'S LEMMA AND CONNECTED RESULTS
We define for a polynomial f € Z[X] the following sets:
P(f) = {p prime| 3n e N*,p | f(n)}

and

P(f) = {p prime| 3¢ € N*, ¢ prime,p | f(q)}.
Note that P(f) C P(f).
It is well-known that for f € Z[X] we have a — b | f(a) — f(b), for any
a,b € 7Z, and we refer to as the ”fundamental lemma”.
We begin with a simple result.

Proposition 1.1. For f € Z[X] a non-constant polynomial, we have
P(f) =P(f).

Proof. Let p € P(f) and p 1 f(0). Then there exists n € N with (n,p) =1
and p | f(n). According to Dirichlet’s theorem, the arithmetic progression
n + pr, with » € N*, contains infinitely many primes. Let ¢ be a prime from
this progression. Then, using the ,fundamental lemma*, we have p | f(q), so

p € P(f). For p| f(0), it follows p | f(p). Thus P(f) = P(f). O

We proceed with the first classical result due to Schur.

Theorem 1.1. (Schur’s Lemma) For f € Z[X] a non-constant polynomial,
P(f) is an infinite set.

Proof. We assume that P(f) is finite and let {p1, ..., pr} denote its elements.
We first note that f(0) # 0, otherwise X | f(X), and thus p | f(p) for any
prime number p, a contradiction with our assumption.

Let f(X) = apX™ 4+ -+ + a1 X + ap. We look at the value of f on
numbers of the type Magp; - - - p- We observe that

f(Magpy -+ pr) = aolanM™af ™ (p1 -+ pp)™ + - + a1 Mpy - - py. + 1] = aot,

where ¢ = 1 (mod pipa---pr). If t # 1, then there is a prime ¢ with
q & {p1,-..,px} and q | f(Magp: - - px) for some M, a contradiction. Thus
f(Magpy - - pr) = ag for any M. It follows that f — ag has infinitely many
roots, so it is the zero polynomial, which leads to f constant, a contradiction
with the hypothesis. O

Since we have proven that P(f) is infinite, we can ask whether it could be
the whole set of prime numbers. This obviously holds for linear polynomials.
We can prove that these are the only irreducible polynomials for which this
assertion holds.
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Theorem 1.2. The only irreducible polynomials f € Z[X] for which P(f)
contains all the primes, except a finite number, are the linear ones.

Proof. A celebrated result, due to Frobenius (see [1]), states that the density
of primes p for which f has a given decomposition of type ni,no,...,n; over
1
G
ni,...,ns. (Here we denoted by G the Galois group of the polynomial f,

which can be identified with a group of permutations of the set X of roots
of f.) In particular, the density of primes where f has a root, i.e. a factor

[F, exists and is equal to times the number of 0 € G with cycle pattern

of degree 1, equals @ times the number of elements of GG that have at least
one cycle of length 1, i.e. a fixed point. By the hypothesis this density is
equal to 1, so all elements of G must have a fixed point.

We shall prove that this is not possible for deg(f) > 2. In order to
prove this we make use of Burnside’s lemma (see [2]), which states that if X

is a finite G-set, and | X 9| is the number of elements of X fixed by ¢, then

1
the number of G-orbits of X is equal to —; Z |X7]. A corollary of this is

|G| geG
that if X is a finite transitive set with |X| > 1, then there is ¢ € G with
| X9 = 0. The statement is immediate, since the number of G-orbits is 1, so
|G| = Z | X9]. We note that | X¢| = |X| > 1, so if for every g # e we would
geG
have | X9| > 1, then the number in the right-hand side would be too large.
We apply this to the case of the set X of roots of the polynomial f,
and G taken as the Galois group of f. It follows that for deg(f) > 2, or
equivalently | X| > 2, since f has no multiple roots, there is an automorphism
o € G with no fixed points. This contradicts our hypothesis. O

The following result extends Schur’s lemma to an arbitrary number of
polynomials.

Theorem 1.3. If fi,...,fn € Z[X] are non-constant polynomials, then
n

m P(f;) is an infinite set.

=1

Proof. First of all let us prove that there exists z € C an algebraic number and
the polynomials hq, hg, ..., h, € Q[X] such that f;(hi(z))=0,Vi=1,...,n.

To prove this claim, for each f; we take z; one of its roots. The
field extension Q — Q(z1,x2,...,x,) is finite and separable. We deduce,
from the primitive element theorem, that there exists z € C with Q(z) =
= Q(z1,x2,...,2,). Thus we can find hy,he,...,h, € Q[X] such that
hi(z) = x;, and thus f;(hi(2)) = fi(x;) = 0.
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We note that for each h; there is N; € Z* such that N;h; € Z[X]. Thus
the polynomials Nl.di f o h; have integer coefficients, where d; is the degree of
fi,i=1,...,n.

Since all these polynomials have in common the root z which is an
algebraic number, each of the polynomials f o h; is divisible by the minimal
polynomial of z, denoted by g. We know that g € Q[X], thus we consider
M € Z* such that Mg € Z[X].

We observe that Mg | MNZ.dif oh;, Vi=1,...,n. Since Mg is a non-
constant polynomial with integer coefficients, from Schur’s lemma we know

n
that P(M g) is infinite. Now the set of prime divisors of the number M H N;
i=1
is finite, and thus we deduce that P(Mg) C P(f;), Vi = 1,...,n, except a

finite number of primes.
n

We conclude that P(Mg) C ﬂ P(f;), except a finite set, and thus the
=1
theorem is proved. Z O

2. THE IMAGE OF A POLYNOMIAL RESTRICTED TO PRIME NUMBERS

In this section we present two results about the number of prime divisors
and the exponent of a prime in numbers of the type f(p), with p prime.

Theorem 2.1. The only polynomials f € Z[X]| for which there exists k € N*
such that for any prime number g, f(q) has at most k distinct prime divisors,
are f(X) = cX', where c € Z* and i € N*.

Proof. Let us prove that f(0) = 0. We proceed by contradiction and assume
7(0) £ 0,

We prove by induction on j € N* the following statement: there is a
prime p > |f(0)| such that f(p) has at least j distinct prime divisors.

For j = 1 there exists a prime p; > |f(0)| such that p; is not a root
of the polynomial f2 — 1, since f is non-constant. Then p; satisfies our
statement.

Now, for j — j + 1, let p; be a prime with the property p; > |f(0)| and
f(p;) has at least j distinct prime divisors. If f(p;) has at least j+ 1 distinct
prime divisors, then we choose p;y1 = p;. Otherwise, let us notice that
(pj, f(pj)) = 1 since from the ”fundamental lemma” we have f(p;) = f(0)
(mod p;) and the conclusion follows since p; is prime and greater that | f(0)].
According to Dirichlet’s theorem, there are infinitely many primes in the
arithmetic progression r f%(p;)+p;. Let pj+1 = sf2(p;) +p; be such a prime.
From the "fundamental lemma” we have that f(p;j+1) = f(p;) (mod f?(p;))
and thus there is ¢ such that f(pj4+1) = f(p;)(1 +tf(p;)). From this it is
obvious that f(pj4+1) has at least one prime divisor more than f(p;). Since
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f(p;) has j distinct prime divisors it follows that f(p;+1) has at least j + 1
prime factors.

Thus the statement is proved and we get that f(0) # 0 is false. This
implies f(0) = 0, so f(X) = X'g(X) with g(0) # 0, and if g would be
nonconstant, arguing the same way as above, we obtain again a contradiction.

We can now conclude that the only possibility is f(X) = cX*® with
1€ N*and c € Z*. 0

Theorem 2.2. The polynomials f € Z[X] such that f(p) is k-th power free
for all primes p, where k > 2 is an integer, are dX®, where 1 < i < k, and
every prime factor of d occurs in its prime factors decomposition at a power
less than or equal to k —i — 1.

Proof. First of all let f = g1 --- g, be the decomposition of f in irreducibile
factors over Z[X]. It follows from the hypothesis that gi1,..., g, satisfy the
condition that they are k-th power free on prime values. Thus we can assume
that f is a nonconstant irreducible polynomial.

Next let us prove that f(0) = 0. Assume the contrary, f(0) # 0.

Since deg(f’) < deg(f) and f is irreducibile over Q[X], it follows that
(f', f) = 1, and thus there are polynomials g, h € Q[X| such that f'g+fh = 1.
Now there is ¢ € Z such that cg and ch are both polynomials in Z[X], thus
there are g1, h1 € Z[X] with

flor+ fhi=c (1)

From Schur’s lemma we can choose infinitely many primes ¢ such that
there is p with p > |c|, p > |f(0)], and p* | f(q), 1 < a < k. We know from
Taylor expansion for polynomials that

(tp*)?
91

If we have p | f'(q), then from (1) we get p | ¢, a contradiction with
p > |c|. Thus we can pick ¢ with the property that f(q) + f'(q) - tp® =
= 0(mod p®*1), so p®* | f(g+tp®). Since £(0) # 0, we get (¢-+tp®, p*T!) = 1.
Assuming the contrary, it would follow that p = ¢, and this would imply
p | f(q) = f(p), thus p | f(0), a contradiction with the choice p > |f(0)|.
So (q + tp%,p**1) = 1 and by Dirichlet’s theorem there is a prime m in the
arithmetic progression np®*! + ¢ + tp® with m { £(0).

We have found a prime m such that p®™! | f(m). We can repeat
the same argument in order to increase the power of p and finally reach a
contradiction with the fact that the exponent of p is bounded by k.

Thus f(0) = 0 and since f is irreducible it follows that f = £X. We
can conclude from here that the only required polynomials are of the form
dX? with 1 <14 < k and every prime factor of d occurs at a power less than
k—1—1. ]

flg+tp®) = f(Q)+f (@) tp*+f"(q)- +...= f(@)+f(q)tp” (mod p*h).
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Seria lui Euler
MIRCEA OLTEANUY

Abstract. The purpose of this note is to present one of the most cele-
brated problems of the XVII-th century, known as the ”Basel Problem”,

1
i.e. the computation of the sum of the series Z — - The first part of

n

n>1

the paper contains the "history” of the problem, including Euler’s original
approach and some further developments, e.g. the connections with the
Prime Number Theorem. In the second part, few rigorous "modern solu-
tions” are presented.

Keywords: Euler series, Riemann zeta function.
MSC: 40A05, 97130

Calculele implicand sume infinite au aparut inca din antichitate. Para-
1
doxul dihotomiei al lui Zenon (care conduce la seria geometrica de ratie —)

sau aria marginita de parabola si de o secanta a ei (calculata de Arhimede

folosind suma seriei geometrice cu ratia Z) sunt exemple celebre. In secolul

al XIV-lea, Nicolas Oresme a aratat divergenta seriei armonice, iar ulterior,

in secolul al XVII-lea, Gregory, Newton, Leibniz g.a. au rezolvat probleme
. . e (-t g .
devenite clasice (de exemplu, seria lui Leibniz: ~——— = —). Desigur
n>
demonstratiile nu intruneau standardele actuale de rigoare, lucru explicabil
tinand cont de lipsa unor definitii riguroase pentru notiunile fundamentale
ale analizei matematice: convergenta, limita, derivata, integrala, convergenta
uniforma etc.
In aceasta nota vrem sa ilustram dificultatile, dar si implicatiile pro-
funde ale unor probleme ridicate de teoria seriilor. Vom face acest lucru
prezentand o problema celebra: calculul sumei seriei lui Euler

Y-
n2 6
n>1

(numita, datorita fratilor Jakob gi Johann Bernoulli, ,,problema de la Basel”).

Textul care urmeaza are caracter elementar si nu prezinta intreaga com-
plexitate a consecintelor care au avut ca punct de plecare problema de la

b Department of Mathematical Methods and Models, University Politehnica of
Bucharest
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Basel. Scopul este de a ilustra cateva din subtilitatile pe care le ridica teoria
seriilor si de a prezenta o parte din ideile i rationamentele care l-au con-
dus pe Euler la rezolvarea problemei. In plus, contactul cu metodele folosite
de marii clasici ai matematicii poate avea astazi valoare didactica, in sensul
ideilor lui Courant si Robbins din prefata la [2].

Revenim acum la seria lui Euler. Problema pare a fi fost enuntata pen-
tru prima data in 1644 de Pietro Mengoli (acesta a calculat in 1650 suma

(=n"

seriei armonice alternate, Z = In2) si aproape toti marii matemati-
n>1
cieni ai vremii au Incercat si o rezolve (printre altii: Wallis in 1655, Leibniz,
Jakob gi Johann Bernoulli dupa 1691), ajungand cea mai cunoscuta proble-
ma a timpului respectiv. In anul 1734, Buler publica rezultatul (dand trei
demonstratii), dupa ce, in prealabil, incepand cu 1730, obtinuse aproximari
din ce in ce mai bune ale sumei seriei (6 zecimale exacte in 1731, 20 de zeci-
male exacte in 1733). Intr-o serie de articole ulterioare (pana in 1748), Euler
a reluat problema, publicand mai multe solutii, extinzand o serie de rezultate
si imbunititind rigoarea argumentelor. In continuare vom prezenta ideile lui
Euler, urmate si de solutii riguroase conforme cu standardele actuale.
Convergenta seriei este asiguratd de majorarea:

1 1 1 1
Zﬁgl—i_;n(n—l):1—’_7;2(71—1_5):2.

n>1

Vom nota In continuare cu S suma seriei lui Euler.

APROXIMAREA SUMEI

Trebuie observat ca o prima dificultate a problemei consta in faptul ca

. 1 . . o .
seria E —5 converge foarte incet, deci nu se pot obtine aproximari ale sumei
n
n>1
adunand un numar acceptabil de termeni. Mai precis, din inegalitatile

L1 1111
E+1 k(k+1) "k~ (k—-Dk k-1 k

1
z

obtinem urmatoarea evaluare a restului seriei:

De aici rezulta ca pentru a calcula primele 6 zecimale exacte ale sumei
seriei trebuie insumati cel putin primii 10° termeni. Pentru a obtine aproxi-
mari cat mai bune ale sumei, Euler a construit o serie care converge rapid la
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. . 1 . .
aceeasi suma ca gi E — . Seria obtinuta de Euler este
n
n>1

1
2
n>1
Pentru aproximarea lui In 2 s-a folosit seria

1
ln2zzm,

n>1

obtinut din seria de puteri a functiei — In(1 —z) pentru z = 271, In acest fel
FEuler a obtinut valoarea aproximativa cu 6 zecimale exacte: S ~ 1,644944.
Nu intram aici in detaliile descoperirii de catre Euler a seriei (1); pe

scurt, a considerat seria de puteri E —5, |z| <1 (de fapt functia generatoare
n
n>1

1

a girului —). Suma acestei serii este functia dilogaritmica, notatd Lia(z);
n

evident, Liz(1) = S. Are loc urmatoarea reprezentare integrala:

xT

LIQ(.’E) :/—Mdt.

t
0
Pentru x = 1, rezulta
[ In(l [
—t 1—
Lmnz/ﬁfL—J&+/—£L—@m.
t U
0 s

De aici, schimband in a doua integrala variabila 1 — v = y si aplicand
formula de integrare prin parti, se obtine ecuatia functionala

Lig(z) + Lig(1 — 2) = —lnz - In(1 — x) + Liy(1), |z| < 1.
Pentru z = 271, rezulta

S:h92+2§:

n>1

1
n2.9on’

METODELE LUI EULER PENTRU CALCULUL SUMEI

In continuare vom prezenta citeva din solutiile propuse de Euler. Ideea
lui Euler a fost sa extrapoleze relatii intre radacinile gi coeficientii unui poli-
nom la serii de puteri. In legatura cu utilizarea metodei analogiei in mate-
maticd recomandam [4].

Prima solutie (care are include si un rationament geometric) pe care
Euler o prezinta in articolul din 1734 este descrisa in detaliu in [6].
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Vom incepe insa cu a treia solutie din acel articol. Fie P un polinom
de gradul 2n cu coeficienti reali, avand numai termeni de grad par, scris sub
forma

P(z) = ag — a12? + agz® + - - 4 (—1)"a,z®™.
Presupunem ca toate radacinile x1, —x1, x2, —x9, ..., T, —2, ale polino-

mului P sunt reale, nenule si simple. Din relatiile dintre radacini si coeficienti

rezulta
n

1 aq
Y 5 =—. (2)
=1 ‘Tk: agn

In continuare, Euler face o analogie intre acest rezultat din teoria poli-
inx

. . . . .. S
noamelor si seria de puteri (pare) asociate functiei

T 3! 5!

si extrapoleaza (fara o justificare riguroasa) formula (2) in acest caz. Solutiile

ecuatiei ST _ 0 sunt m,—m,2m, —2m, ... si deci din (2) rezulta
Y=g
— =,
= (nm) 3!

ceea ce Incheie demonstratia.

Desigur, Euler era congtient de punctele slabe ale rationamentelor sale:
nu toate rezultatele adevarate pentru polinoame sunt adevarate pentru serii
de puteri, si, in plus, nu se gtia in acel moment daca nw,n € Z, sunt singurele
zerouri ale functiei sinus. Totusi, Euler era sigur ca rezultatul este corect
pentru ca el concorda cu aproximarile obtinute anterior (folosind seria (1)).
In plus, el verificase proprietiti de tipul (2) si pentru alte serii de puteri
utilizate in calculul unor sume infinite. Trebuie totusi mentionat ca exista
serii de puteri care nu satisfac relatii de tipul (2). Un exemplu simplu in
acest sens este dat de seria geometrica. Fie functia

1 2 3

f(x):2—1 =l—-z—az"—2°—--, || < 1.
-

Ecuatia f(x) = 0 are o singurd solutie: x = 27!. Pe de altd parte, daci
incercam si extrapolam formula pentru suma inverselor radéacinilor unui poli-
nom (aceasta este in fapt relatia (2)) la seria de puteri a functiei f, obtinem
o contradictie: 2 = 1.

Prezentdam acum o alta solutie (data tot in articolul din 1734) care i-a
permis ulterior lui Euler sa obtina generalizari si alte rezultate interesante.
Fie P un polinom de gradul n avand radacini nenule (eventual multiple)
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., T, pe care-1 scriem sub forma

o= (-5)(-2)-(-2).

Atunci, daca polinomul P are forma canonica
2
P(x) = ag + a1z + agz” + - - + apa”,

1,22, -

rezulta
apg = L
1 1 1
— 4 — 4+ — = —ay, (3)
r1 €2 In
1 1 1 9
— 4+ =44+ —==af —2a , 4
2 3 x2 ! 2 )
1 1 1 3
—+ =+ +—=—a7—3 — 3as,
x% x% x% aq a1an as

Euler a extrapolat (fara justificare riguroasa) acest rezultat de la poli-

noame la seria de puteri a functiei 1 — sin x:
3

. (D" ong1 z
1——SH1$-— 1—-§£:Z§Ei;15i$ ——1——$'+'§T'+..w V$(EH&

n>0
Functia 1 — sinx se anuleaza in
T 3w bw Tmw
PRI R
In plus, toate aceste radacini sunt duble (aici iarasi se extrapoleaza notiuni

de la polinoame la serii de puteri).
Aplicand acum relatia (3) seriei de puteri a functiei 1 — sinx, Euler

regaseste rezultatul lui Leibniz:
4 —1)nt
S el G

In acelasi mod, din relatia (4), rezulti
8 1
— — =1
T2 Z (2n _ 1)2
n>1
Pentru a incheia demonstratia mai este nevoie de urmatoarea observatie
simpla:
1 1 1 1
—_— == — =-=8.
Z (2n)2 4 Z n2 4
n>1 n>1

Rezulta ca
1
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Daca introducem acum functia zeta a lui Riemann,

1
C(s)zzﬁ,se(@,s:a—kit,

n>1

definita de Euler pentru s natural, prelungita de Chebyshev la numere reale
s > 1 gi extinsa (prin prelungire analitica) de Riemann in 1859 la numere
complexe, rezultatul de mai sus se scrie

2

(@=8="1.

Tot cu metoda de mai sus, rezulta

n>1

Continuand rationamentele, Euler a reusit sa calculeze valorile functiei
¢ pentru orice numar natural par, exprimandu-le cu ajutorul numerelor lui
Bernoulli (introduse mai inainte de Jakob Bernoulli si publicate postum in
1713):

(_1)k7122k71B2k .
(2k)!
Euler este cel care, cu ocazia publicarii acestei formule, a propus denu-

mirea de ,numerele lui Bernoulli“. Nu intram in detalii, doar reamintim o
definitie elementara a numerelor lui Bernoulli (notate By):

C(2k) = 2k k=1,2,....

n m
Z 1 Z

km:m——l—l 07];:1+1'Bk'nm+1_k7 m7n:172737""
k= k=0

In anul 1737, Euler demonstreazi formula care face legatura intre nu-
merele prime gi functia ¢:

o= I
ns : 1—
n>1 p prim
In scopul estimarii numarului numerelor prime mai mici decat un numar
dat x (numar notat 7(x)), in 1859, Bernhard Riemann prelungeste functia ¢
la intreg planul complex si demonstreaza ca ,,zerourile netriviale* ale functiei
¢ se gasesc In ,,banda critica“ 0 < ¢ < 1 gi sunt pozitionate simetric fata de
axa reala si fata de ,axa critica“ o = 3 (vezi [5]). Reamintim ca ,zerourile

triviale“ ale functiei ¢ sunt numerele negative pare. Tot in articolul amin-
tit, Riemann face celebra conjectura cu privire la ,,zerourile netriviale“ ale

functiei (: acestea sunt toate pe axa critica ¢ = 7 Afirmatia este inca
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nedemonstrata, ea constituind probabil cea mai celebra problema ce isi ag-
teapta rezolvarea. Zerourile netriviale al e functiei zeta sunt legate de reparti-
tia numerelor prime.

In 1896, Hadamard si de la Valleé-Poussin au demonstrat (in mod inde-
pendent) legea de repartitie asimptotica a numerelor prime (enuntata de
Gauss 1n 1792):

m(x) _

z—oo z/Inx ’

folosind faptul ca zerourile netriviale ale functiei zeta nu se gasesc pe dreapta
oc=1.In 1951, N. Wiener a aratat ci teorema numerelor prime este de fapt
echivalenta cu aceasta proprietate. Demonstratia conjecturii lui Riemann ar
duce la enunturi mai precise pentru repartitia numerelor prime.

Revenind la seria lui Euler, acesta a publicat in 1744 celebra formula-
produs pentru functia sinus, formula ce i-a permis sa obtina riguros suma
seriei Z %:

n

n>1

sinzx a x2
— = 11 (1 - —n2ﬂ2> : (5)
n=1

Pentru demonstratia formulei (5), Euler a pornit de la relatia

sinzx e —e”

T

x 2ix

si a exprimat exponentialele ca limite ale unor polinoame

iz \" iz \"
BT
sin & n n

= lim -
T n—00 2ix

Apoi a descompus 1n factori polinoamele

iz \" iz \" 2%k
(1+g> —<1—g> P 22 1+ cos —~
:H 12 . n

2ix n2 2km
k=1 1—cos—
n

, n=2p+1.

Formula (5) se obtine prin trecere la limita si comutand limita cu pro-
dusul:

2 ok T 2.2
€T n—00 n s k4
k=1 1 —cos— k=1

n

P 1+cos%7r 00
. 2 — 2
o 1T (-2 ) T (- 2).

Euler nu justifica trecerea la limita factor cu factor, dar acest lucru
se poate face ugor folosind notiunea de convergenta uniforma si majorarea
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uniforma (in raport cu n):

1+ cos2]€—7r
2k | — k2x2°
1 —cos—
n

M fiind o constanta rezultata din marginirea functiei in jurul origi-

sin x
nii. Folosind formula (5), suma seriei lui Euler se poate calcula identificand
coeficientul lui 22 din dezvoltarea
sinx 1 1
=1-—a’4—at— ...
x 3! 5!

cu coeficientul lui 22 din produsul 5; rezulta ca

I 1 1 1
T\ mEteEe Tt )

ceea ce Incheie demonstratia.

EXERCITIU

Inainte de a continua cu alte solutii pentru problema de la Basel, propu-
nem cititorului sa demonstreze formula urmand metoda lui Euler (analogia
polinoame - serii de puteri), folosind dezvoltarea in serie de puteri a functiei
sin /z

N3

sin /z 11,

L 5
=l-sr+=2"— 52"+

Nz TR T

. ~ o . sSin
si observand ca functia

NG

METODE MODERNE PENTRU CALCULUL SUMEI

se anuleaza in n?7%, n=1,2,3,....

In continuare vom prezenta alte demonstratii (numite de obicei moder-
ne) ale rezultatului obtinut de Euler.
O prima metoda (elementara) foloseste sirul de integrale

2

I, = cos"xdxr, n=0,1,2,....

O\MI:\

Presupunem cunoscut rezultatul urméator (pe care-1 propunem ca exercitiu):

1-3-5-...-(2n—1)
2.4-6-...-(2n)

T
cos™ xdx = g

O\mm



21

M. OLTEANU, SERIA LUI EULER

Pe de alta parte, integrand succesiv prin parti, obtinem:
p— . —_— . /
rcos® ty -sinzdr = —n [ 2%(cos® !z sinx) do =

O\Nlﬂ

cos? zdx = 2n

O\mm
O\Nlﬂ

[SIE]

2cos®™ xdx = n(2n —1)Iyp—o — 2n2Iy,.

2% cos® 2 1 — 2n? / z° cos

=n(2n—1)
0

O\m\a

cos?" z dz de mai sus, rezultd relatia

O\m\a

Folosind si valoarea integralei

1-3-5-...-(2n—-1) =
5"

de recurenta
2n2Ioy, — n(2n — 1) o2 = —
nlon = n(2n = Dl 2. 4-6-... (2n)
A 2-4-6-...-(2 1
Inmultind ultima egalitate cu 135 .. 252 ?z) 0 o rezulta
2:4-6-...-(2n) 2:4-6-...-(2n—-2) T 1
'IQn_ 'IQTL—QZ__'_Q-
1-3-5-...-(2n—1) 1-3-5-...-(2n—3) 4
Scriem acum relatia de mai sus pentru 1,2,3,1...,n (pentru n = 1
luam relatia de recurenta inainte de inmultire) si insumand obtinem
2:4-6-...-(2n) T 1 1 1
Ty =Ig— = (14 =+ =+ ..+ =
1-35-...-(2n—1) ™ %14 ( Tty t +n2>
3
Prin calcul direct, Iy = 2—4 si deci demonstratia se incheie daca aratam
egalitatea
) 2:4-6-...-(2n)
1 - Iop = 0.
ngIéOI~3-5'...-(2n—1) n
Din inegalitatea elementara (exercitiu !)
2
—-x <sinz, Vx € [O,g} ,

™

2

rezulta
™ .
= sin’ z cos® rdz =

22 cos™ zdx <

O\m\a

IQn =

O\M\:\

cos? zdx — [ cos™2pdr | =

O\w\a
O\w\a

1
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o 1-35-..(2n—1) 1-3-5-...-2n+1)\
_§( 2-4-6-...7(2n) _2-4-6-...-(2n—|—2)>_
_7r3 1-3-5-...-(2n—1)

T8 2.4.6...-(2n+2)°

Obtinem ca

4-6- . 3
0< 2:4-6-...-(2n) 'Iznﬁﬂ—' 1 ’
1-3:5-...-(2n—1) 8 2n+2
ceea ce Incheie demonstratia.

O alta demonstratie (tot cu caracter elementar) se obtine plecand de la
identitatile trigonometrice'

n(2n — 1)
t = =1,2,3,...
chQ +1 3 7n =YD

k 2 2
Zcose022nil = n( n3—|— ), n=123,....

Inegalitatea (cunoscuta)
m
sinz < x <tgzx, Vz€ (0, §> ,
se poate scrie sub forma

1
ctg?zr < — < cosec’z, YV € (0, E) ,
T 2

si deci
km 2n +1 km
t, 2 < < 2 5 = 17 27 B
8 ont1 ( km > O o+ 1 "
Insumand inegalitatile de mai sus pentru k = 1,2,3,...,n si aplicand

cele doua identitati trigonometrice men@ionate rezulta

n(2n — 1) 2n+1 n(2n + 3)
3 Z k2 3 ’

sau, echivalent,

72 2n -1) - n(2n+ 3)
Z 7 < -

(2n+1)2 2n + 1) 3

Pentru n — oo se obtine rezultatul 1u1 Fuler.

Ultima solutie pe care o prezentam foloseste serii trigonometrice. In
continuare vom presupune ca cititorul este familiarizat cu dezvoltarea in serie
trigonometrica a unei functii periodice.

Vom dezvolta in serie Fourier functia (continua)

f(x) = 2% z € (—m, ]
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Calculam coeficientii Fourier:

1
ao——/xde——WQ,
T
—T
T - 4 ™
1 2
an——/xQCosnxdx——x2sinnx ——/xsinnxdx—
T nmw g nm
—T 0
- T
4 4 . -1"
= —S_-xCcosnr —T/smnxdx—él( 2) , Vn > 1.
nA4m 0 nem n
0
s
1 .
bn——/x2smnxdx—0, Vn>1.
T
—T

Obtinem dezvoltarea

12 = % +7;(ancosn:c+bnsinn:c) =

2 —1\)»

In particular, pentru x = 7, obtinem rezultatul lui Euler.

Exista multe alte solutii pentru problema de la Basel. O parte dintre
ele, insotite de diverse dezvoltari si comentarii interesante, se pot gasi in
lucrarile de mai jos.
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Olimpiada de Matematica a studentilor din sud-estul
Europei, SEEMOUS 2012

CORNEL BAETICA si GABRIEL MINcUY

Abstract. This note deals with the problems of the 6th South Eastern Eu-
ropean Mathematical Olympiad for University Students, SEEMOUS 2012,
organized by the Union of Bulgarian Mathematicians in Blagoevgrad, Bul-
garia, between March 6 and March 11, 2012.

Keywords: Determinants, dominated convergence theorem, eigenvalues,
Gamma function, Leibniz product rule.

MSC: 11C20, 15A18, 33D05, 40A30

Cea de-a sasea editie a Olimpiadei de Matematica a studentilor din
sud-estul Europei, SEEMOUS 2012, a fost organizata de Uniunea Matemati-
cienilor din Bulgaria si de Societatea de Matematica din Sud-Estul Europei
in localitatea Blagoevgrad din Bulgaria, in perioada 6-11 martie 2012. Au
participat 97 de studenti de la universitati din Bulgaria, Grecia, Macedonia,
Romania, Turcia si Ucraina.

Concursul a avut o singura proba constand in patru probleme. Prezen-
tam mai jos cele patru probleme insotite de solutii, unele dintre acestea fiind
preluate din lucrarile concurentilor. Pentru solutiile oficiale facem trimitere
la http://seemous2012.swu.bg.

Problema 1. Fie matricca A = (a;j)i; € Mnp(Z), ai; fiind restul
impértirii la 3 a numérului ¥/ + j°. Gasiti valoarea maximi a lui n € N*
pentru care det A # 0.

Volodimir Braiman, Ucraina

Aceasta a fost consideratd de juriu drept o problemad usoard. Majoritatea
studenti-lor care au rezolvat problema au procedat in spiritul primei solutii
pe care o prezentam. Aceasta §i solutia oficiald.

Solutia 1. Notam cu m valoarea maxima ceruta. Remarcam ca pentru
orice i, j € N* avem /72 =4/ (mod 3) si (i+3)/ =’ (mod 3). Prin urmare,
(i +6)7 + j0 = i/ + j° (mod 3). Rezultd ci in cazul n > 7 linia a saptea
a matricei A coincide cu prima. Deducem c& in acest caz det A = 0, deci
m < 6. Se constata prin calcul direct ca pentru n = 6 avem det A = 0, iar
pentru n =5 avem det A = 12 # 0. In concluzie, m = 5. O

Solutia 2. Fie n > 6. Consideram matricele B = (b;;); j,C = (cij)i; €
€ M, (Z), unde b;;, respectiv c¢;;, sunt resturile impartirii la 3 ale lui 4/,
respectiv j°. Evident, A = B + C. Notim cu cﬁ/f coloana k a unei ma-
trice arbitrare M. Este imediat (folosind observatiile facute in cadrul primei
solutii) ca pentru orice k € {1,2,...,n—2} avem CE+2 = ckB si ca pentru orice

DUniversity of Bucharest, Faculty of Mathematics and Informatics, Bucharest, Roma-
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ke{l,2,...,n— 3} avem ck.CJr3 = ckC. Prin urmare, din orice trei coloane ale
matricei B cel putin doua coincid, iar din orice patru coloane ale matricei C
cel putin doua coincid. Pentru fiecare 1 < 47 <9 < ... < i < n, desemnam
prin B2+ matricea obtinutd din B inlocuind coloanele i1, 49, ..., i, cu
cele corespunzatoare ale lui C'. Folosind in mod repetat aditivitatea deter-
minantului In raport cu coloanele sale, obtinem ca

det A = det(B +C)=detB+ Z Z det B2k

k=1 \1<i1<i2<...<1,.<n

Se constata ca fiecare determinant din membrul drept al relatiei ante-
rioare are fie cel putin trei coloane ale matricei B, fie cel putin patru coloane
ale matricei C'. De aici rezultd cd matricea A are cel putin doud coloane
egale, deci det A = 0.

In consecinta, m < 5. Pentru n = 5 se constata prin calcul direct ca
det A =12 # 0. In concluzie, m = 5. g
(Aceasta solutie a fost data in concurs de catre Theodor Munteanu.)

Problema 2. Consideram triunghiurile dreptunghice AAgA,An+1,
n € N* cu m(xAgAnAny1) = 90V si astfel incat pentru fiecare n > 2 dreapta
AgA,, si separe punctele A, 1 si Apt1.

as An

az

Ay a1 A

Este posibil ca sirul de puncte (A,),>1 sa fie nemarginit, dar seria
Z m(XAgA,A,+1) sa fie convergenta?
n>1
Volodimir Braiman, Ucraina

Aceasta a fost considerata de juriu drept o problema de dificultate medie.
Studentii care au rezolvat problema au procedat in spiritul uneia dintre cele
doud solutii oficiale.

Solutia 1. Presupunem ca seria din enunt este convergenta. KExista
ot

T ~

atunci ¢ € N* astfel incat a = Zm(qAnAoAnH) < 5 In semiplanul
n>q

determinat de dreapta AgA, si punctul A,y; consideram semidreapta s cu
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originea Ag care formeaza cu [ApA, un unghi de masura a. Notam cu B
intersectia dintre s si [AgA4+1 si aratam inductiv ca pentru orice k € N*
semidreapta [Ag4—1 A4+ intersecteaza s (intr-un punct pe care il notam cu
By).

Aq
Ag+1

A -+ By Bo By

Fie k € N*. Presupunem construit Bj. Dreapta AgA,;; separa atat
Agir—1 8t Agyrs1, cat si Agyr—1 si By; prin urmare, ea nu separa Agqpy1
§i Bk Cum m(<IAq+kA0Aq+k+1) < Hl(<):Aq+kAoBk), iar m({AoAqukBk) >

T .
> 5 = Hl(<IA0Aq+kAq+k+1), rezulta Aq+k+1 S Int(AAoAq+kBk), deci

[Ag+rAgtit+1 si [AoBi] C s au un punct comun. Notand cu Bjiq acest
punct, incheiem pasul de inductie. Din cele precedente se obtine pentru
fiecare k € N* gi incluziunea Int(AAgAg4x+1Bi+1) C Int(AAgAgyrBr).

Folosind inductiv aceste relatii, constatam ca pentru orice k > 2 avem
Agyr € Int(AAgAgyk—1Bi—1) C Int(AAgAyB1), de unde deducem ca sirul
(An)n>1 este marginit.

In concluzie, raspunsul la intrebarea problemei este negativ. O

Solutia 2. Notam a, = A,_1A,, n € N*. Observam ca pentru orice
n € N* avem AgA, = +/a} + a3 +--- + a2, iar

Gn+41

m(<sA,AgAn41) = arctg .
A Va3 +ai+-+adl

Notand s,, = a% + a% +-+++a2, intrebarea problemei se poate reformula
astfel: , Exista giruri strict crescatoare si nemarginite (sp)p>1 de numere

.. . Sn+1 — Sn Yo
pozitive pentru care seria g arctg,/ ——— este convergenta?’“.
87’1
n>1

Presupunem cé exista un astfel de sir (s,)n>1-

Sp+1 — Sn v v v
Cum g arctgy/ ———— este convergenta, rezulta ca
Sn
n>1
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S 1— S
arctg cntl o
. S . . Sn4+1 — S N
de unde lim n = 1, deci seria g v/ ntl 7P este la randul
n—oo —
Sn+l — Sn n>1 5n
STL

Sp+1 — Sn
Sn
=1-+1t%, deci Insg1 = Ins, +In(1 +¢7). Adunand aceste relaii

sau convergenta. Notam ¢, = Atunci, pentru orice k € N*

Sk+1

aveln

Sk
pentru k € {1,2,...,n — 1}, obtinem

n—1
Ins, =Ins; —I-Zln(l—i—ti). (1)
k=1
. 2 In(1 + ¢
Intrucat lim t2 = (hm tn) = 0, avem lim w = 1, deci
n—o00 n—00 n—00 tn
seriile Zln(l +t2) si Z t2 au aceeasi naturd. Cum insi seria Ztn este
n>1 n>1 n>1

convergenta si t, > 0 pentru orice n € N*, rezulta ca si E ti este serie con-
n>1

vergenta. Prin urmare, Z In(1 + t2) este convergenta. De aici i din relatia

n>1
(1) deducem ca sirul (Insy),~, este marginit, contradictie. Prin urmare,
raspunsul la intrebarea din enunt este negativ. O

Problema 3. a) Aratati ca dacd numarul k& € N* este par, iar A €
M, (R) este o matrice simetricd cu proprietatea ca (trAF)F 1 = (trAF+H1)F
atunci A" = (trA)A" L,

b) Ramane afirmatia de la a) adevarata pentru k impar?

Vasile Pop, Romania

Aceasta a fost considerata de juriu drept o problema de dificultate medie.
Concurentii au dat mai multe solutii, dar in linii mari s-a mers pe doud
idei: aducerea matricei A la forma diagonald sau folosirea teoremei Hamilton-
Cayley.

a) Notam k = 2t, t € N*. Matricea A fiind simetrica, ea are toate

valorile proprii reale. Notam cu A1, A9, ..., A, aceste valori. Relatia data se
rescrie

AT A - )P = T A - AT (2)

Daca A\ = Ao = ... = A\, = 0, atunci polinomul caracteristic al lui A

este X™, deci, conform teoremei Hamilton-Cayley, A" = 0 = (trA)A" L.
Daca macar una dintre valorile proprii ale lui A este nenuld, constatam
(impartind prin (A3 + A3t + - - + A28)2+L §i notand
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Aj
;= , J€41,2,...,n}),
1 RS TENgTTE: jed )

ca relatia (2) este echivalenta cu

1_( 2t+1+,u2t+1+ . +M721t+1)2t. (3)

Intrucat p3t + 3t + - + p2t = 1, avem |y < 1, deci u2t+1 < p¥,

Jj€{1,2,...,n}, cu egalitate daca si numai daca u; € {0,1}. Se ob‘gine deci
1= (12 2t+1 +H2t+1 o 22 < (20 2 4 202 = 1) de unde
deducem ca ,u2t+1 = ,u?t, deci pu; € {0,1}, pentru fiecare j € {1,2,...,n}.
Cum insa p2t + p3t + -+ + p2! = 1, rezulta ca unul dintre numerele ; este
1, iar celelalte sunt nule.

In concluzie, dupa o eventuala renumerotare vom avea Ao = A3 = ... =
= )\, = 0. Prin urmare polinomul caracteristic al lui A este X" —X\; X" 1, de
unde, conform teoremei Hamilton-Cayley, A" = \; A"~ = (trA)A" L. O

Observatii. 1) Matricea A fiind diagonalizabila, faptul ca ea are cel
mult o valoare proprie nenula conduce la un rezultat mai tare decat cel din
enuntul problemei, anume A**t! = (trA)A® pentru orice s € N*.

2) Calcule similare celor prezentate mai sus se folosesc pentru a demon-
stra urmatorul rezultat: daca xq,xs,...,x, sunt numere reale nenegative iar
0 <p<gq,atunci (2} + 25+ -+ xfl)% >zl +ad4+- + xn) egalitatea
avand loc daca gi numai daca cel mult unul dintre numerele T1,%2,...,Tn
este nenul (a se vedea, de exemplu, [1, Theorem 19]).

Acest rezultat a aparut citat in lucrarea unui concurent grec si utilizarea
lui rezolva imediat problema.

3) Am prezentat rationamentul prin care am dedus din relatia (2) faptul
cé avem cel mult o valoare A\; nenula in forma in care este el intalnit in texte
standard. Laurian Filip a gasit in concurs urmatoarea maniera eleganta de a
proba aceasta implicatie: daca are loc relatia (2), atunci fie Ay = Ao = ... =
= A\, = 0, fie cel putin una dintre aceste valori este nenula. In aceastd ultimi
situatie vom considera, dupa o eventuala renumerotare, ca || > |A;| pentru
orice j € {1,2,...,n}. Obtinem

(AZE 5 AZE g AZOZEEL - (\26FL 26D 262
(‘)\1‘2t+1 + ’)\’2t+1 S ‘)\n‘Qt-i-l)Qt S )\%t()\%t + )\%t NN )\%t)2t
De aici rezultd AFf + A3f 4 - + A28 < A3 deunde Ao = A3 =... =\, =0.

Remarcam ca putem folosi un rationament similar pentru demonstrarea

cazului de egalitate al inegalitatii mentionate in observatia 2.
10 0

b) Daca luam k=1,n =3¢ A= 01 0 , avem
0 0 —3
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10 0 1 00
(A2 =2 A2 darad= [ O 1 0 | 2210 10} _ s
4 1 2 1
00 —3 00 1
Prin urmare, afirmatia de la punctul a) al problemei nu raméne valabila
pentru k impar. O

Observatii. 1) Putem gasi contraexemple de tipul celui din solutia
punctului b) pentru orice k = 2t + 1, ¢t € N, astfel: se considera functia
fR=R, f(x) = (202 —1)242 — (222142 1 1)2+L i se vede ca f(1) < 0si

lim f(z) = co. Prin urmare, ecuatia (222 — 1)2+2 — (222142 1 1)2+1 =
T—00

are cel putin o radacina in intervalul (1, 00). Notam cu A o astfel de radacina.
Atunci, pentru matricea

avem (trAZH1)2H2 = (N2HT _ 1)HHD = (QN2H2 4 [)AHL = (A2,
Dar

A0 0
A" = 0 M\ 0
0 0 (=1~
iar
An—l 0 0

(trA) A"t = (2X - 1) 0 At 0 :

deci A™ # (trA)A™1L,
2) Lasam ca exercitiu cititorului faptul ca pentru n = 2 nu putem gasi
contraexemple la afirmatia de la punctul a).

n—00

1
1 _ n
Problema 4. a) Calculati lim n/( :1:> dz.

1
1 _ n
b) Calculati li_>m nkH/ (H—x> zFdz, unde k € N, k > 1.
n—oo X
0

Ovidiu Furdui, Romania

Aceasta a fost considerata de juriu drept o problema dificila. Aprecierea
s-a dovedit a fi corectd, doar un singur concurent ob{inand punctajul maxim.
Solutia acestuia, diferitd de cea oficiald, a primit premiul special al juriului.
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1-t¢
Solutie. a) Facem schimbarea de variabila z = ¢ t e [0,1] si

1 1
1-— " n
lim n/ x dr =2 lim n/tidt.
n—00 1+2x n—00 (1 —|—t)2
0 0

Integrand prin parti, membrul drept al acestei relatii devine

obtinem

tn+1
Cum pentru orice t € [0, 1] au loc relatiile 0 < TEE < ¢"*1 obtinem
1 1
tn+1 1 tTL+1
0< / ,deci lim | ———=dt =0, iar
14¢)3 ~ n+2 n—oo | (1+41t)3
0 0

1
1-— " 1
lim n/ :1: der = —.
n—00 1+ 2x 2
0

b) Solutia 1. Folosind schimbarea de variabila de la punctul a), obti-
nem

1 1
1—z\" 1—t)k
lim nkH/ -7 2Fdz = 2 lim nkﬂ/tngdt.
n—00 1+=x Nn—00 (1 + t)k+2
0 0

Definim ¢ : [0,1] = R, ¢(t) = % Limita ceruta este deci egala cu

1
2 lim n**t? / t"o(t)dt.

n—00
0

Folosind formula lui Leibniz referitoaye la calculul derivatelor unui pro-

dus de functii derivabile, obtinem ci ¢U)(1) = 0 pentru 0 < j < k si
—1)kE!
By (C1)TA!
e®) (1) = “oRr2

Integrand in mod repetat prin parti, constatam ca
1

k-i-l/ltn (t)dt nft /ltn—l—l /( )dt /tn+2 //
n = -
4 n+1 (n+1)(n+2)

0

0 0

1

( 1)k k+1 +k
T T D)t k) /t N
0
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1
_ (_1)knk+1 n+k+1, (k) 1 / ntk+1, (k+1)
T D+ -tk " (o — |t eFHD (1)dt

0
Dar o* 1) este continua pe [0,1], deci existdi M > 0 astfel incat
l*+1 ()| < M pentru orice t € [0, 1]. Rezults ci

1 1
M
= / Pl < ntkt2
0 0

1

de unde deducem cii lim [ "TF+H1oF+D (1)dt = 0. In consecinti

n—oo
0
/ 1 " k!
. — T :
g [[(155) s =200 = 5
0

t
b) Solutia 2. Aplicand schimbarea de variabila x = —, ¢t € [0,n],
n
obtinem

1 n

1—2z\" —t\"
lim nF+l / < x) 2"z = lim <—” ) that =
n—00 1+2x n—00 n+t
0 0

— lim (n—_t) X (0.0 (1)dE.

n—00 n-+t
0
Pentru orice ¢t > 0 au loc relatiile
n—t\" 2t \" 4
‘(n_”) X0 (1)| = ‘(1 - n—+t> X0 ()] <

2nt
< theT T g (1) < e

Cum functia t — tFe™! este integrabild Lebesgue pe [0,00), putem aplica
teorema de convergenta dominata. Deducem ca

. n—t\" k - i . n—t\" k B
s [ () o= [ [(557) om0 o=
0 0

B 1 B I'k+1) k!
. k _—2t _ k _ _
_/te dt——2kJrl uwe *du = SEFT . = okl

0 0
(Aceasta solutie a fost data in concurs de catre Konstantinos Tsouvalas din
Grecia.)
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Linear Recursive Sequences in Arbitrary Characteristics
CONSTANTIN-NICOLAE BELIY

Abstract. In this note we obtain a new formula for the general term of a
linearly recursive sequence which holds regardless of the characteristic of
the field.

Keywords: Fields with positive characteristic, linear recurrences, se-
quences.

MSC: 65Q30, 14G17

The sequences satisfying linear recurrences have been studied for a long
time. There is a well known formula for the general term of these sequences
and it involves the roots of the characteristic polynomial and their multiplici-
ties. We usually assume that these are sequences of real or complex numbers
but the theory works for arbitrary fields of characteristic zero. However,
when the characteristic is p > 0 and the characteristic polynomial has a root
with multiplicity greater than p, the general formula no longer works.

Let K be an algebraically closed field,

f=XFtap 1 X4 g€ K[X]

with ag # 0, and let aq, ..., a, be the roots of f with multiplicities k1, ..., ks.
We want to determine all sequences (z,)n>0 With z,, € K satisfying the
linear recurrence of rank k

Tptk + Qp—1Tpyk—1 + - + apxy, =0 Vn > 0.

This problem and its solution are well known when K = C. Namely,
the sequences satisfying the recurrence above are precisely the linear combi-
nations of the sequences (njoz?)n>0 withl1 <i<sand 0<j5<k; — 1

This answer holds for arbitrary fields of characteristic 0 and in many
cases (e.g. when all the roots are simple) in positive characteristics but not
when char K = p and there is a multiplicity k; > p+ 1. In a field K of
positive characteristic p we have n? = n for any integer n, so nP*! = n?2,

nPT2 = n3, and so on. Therefore the sequence (nag'),so coincides with
n

; )n>0, and so on.

(nPal) >0 (nQOz?)nZO with (nPHa

DSimion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest,
Romania
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In this note we give another basis for the space of sequences satisfying a
linear recurrence which works regardless of characteristic. Namely, we prove

that such a basis is made of
e
J n>0

with 1 <74 < sand 0 < j < k; — 1. This result is not essentially new. It is the
subject of [1], a PhD thesis from 1967. The author uses a different method
and restricts himself to the case when K is a finite field. In a footnote
he mentions that the result can be extended to arbitrary fields of positive
characteristic.

We denote V' := {(zp)n>0 : ©n € K ¥n > 0}. Then V is a K-vector
space.
On V' we define the linear operator 1" given by (Zn)n>0 = (Tn+1),>0-

Then for any integer k > 0 the operator T* is given by (2,,)n>0 > (Tnik)n>0-
(When k = 0 T := 1y, the identity on V.)
Lemma 1. If f = a;, X* +--- 4+ ag € K[X], then f(T) is given by
(xn)nZO = (akanrk +- 4+ ann)nZO-
Proof. Let x = (zp),,59 € V. If i > 0 then T (z) = (Tn+i)p>o- Hence
k

k k
f(T)(x) = <Z aﬂﬁ) () = > ai(@nti)nz0 = (Z ai$n+i> ,
i=0 i n>0

i=0 i=0
as claimed. O
We denote Vy := ker f(T'). Then our problem can be restated:
Find a basis for Vi, where f = X"+ aj_1 X" 4. + a9 € K[X].

Remark 2. If f is a monic polynomial of degree k, as above, then the
sequences from V} satisfy a linear recurrence of order k, so they are uniquely
defined by the first k elements. In other words, the mapping (zn)n>0 —

— (z0,...,2k—1) is an isomorphism of vector spaces from V; to K koIt
follows that dim Vy = k = deg f.

Remark 3. If g | f, then V, C V.

Proof. Let f = gh. For any x € V, we have f(T)(z) = gh(T)(z) =
= h(T)(g(T)(x)) = K(T)(0) =0so x € Vy. Thus V, C V;. O

Lemma 4. Let f,g € K[X]| with (f,g) =1. Then Vi, =V; @ V.
Proof. Since (f,g) = 1 there are P,Q € K[X] such that Pf + Qg = 1. For
any 2 € Vyy we have & = 1y(2) = (Pf +Qg)(T)(x) = Pf(T)(x) + Qq(T)(x).

But f(T')(Qg(T)(x)) = Q(T)(f9(T)(x)) = Q(T)(0) = 0, so Qg(T)(x) € V.
Similarly Pf(T)(x) € Vy and so & € Vy+V,. Thus Vi, C Vy+V,. The reverse
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inclusion follows from Remark 3 (we have Vi,V C Vi), so Vig = Vi + V.
Since also by Remark 2 dim Vy +dim V, = deg f +deg g = deg fg = dim Vy,,
we have Vy NV, = {0}, and therefore V;, = Vy @ V.

(Alternatively, if x € Vy NV, then f(T)(x) = g(T)(x) = 0, so Pf(T)(x)
= Qg(T)(xz) = 0, which implies x = Pf(T)(z) + Qg(T)(z) = 0.)

By induction one gets:

Ol

Corollary 5. If f1,..., fs € K[X] are pairwise coprime, then
Vipg =V @@ Vy,.

Lemma 6. For any k > 1 the sequences ) = (<n)> with)0<j<k—-1
37/ n>0
are a basis for Vix_jyk.

Proof. For any © = (z,)n>0 € V we have (T' — 1)(x) = (zp+1 — Tn)n>0. We
have 20 = <(g‘>) = (1)n0, 50 2° # 0 and (T — 1)(z°) = (1 — 1)ns0 = 0.
n>0

(
If j > 1 then (T—l)(_:cj) = (<nj1) - <?)>n>0 <( 1>)n>0

These imply that (7 — 1)/(z7) = 2/~ for j > 1> 1 and (T — 1)7+1(27) = 0.
We now prove our statement by induction on k. If k= 1 then 20 £ 0
and (T —1)(z°) = 0, so 2" € Vx_1. But by Remark 2 dim Vx_; = 1, so 0
is a basis for Vx_;. Let now k& > 1. We have (T — 1)F=1(2%1) = 20 £ 0
and (T — 1)*(zF=1) = 0 (see above), so z¥~! € Vix—r \ Vixoqys-1. But
by Remark 3 V(x_jjr-1 € V(x_;)» and by Remark 2 dlmV(X e =k =
= dim Vi x_jye1 + 1. These imply Vix_1yn = Vix_1yr-1 & KzF~1. By the

induction hypothesis 20, ..., 22 is a basis for Vix—1)yk-1, 80 20, ... gkt

a basis for Vix_jy» = Vix_pyp-1 @ Kkt O

is

k
Lemma 7. Let o € K*. If f =) ;X" € K[X] and g = oFf(a7'X) =
=0

k

= ZaiakfiX", then ¢q : V. — V given by (z)n>0 — (zna™)n>0 defines an
=0

isomorphism between Vy and V.

Proof. Notice that ¢, € Aut(V), ¢5' = ¢,-1. The mapping ¢, Td,"

given by (zn)n>0 = (Tnt1a1)p>0 so we have ¢,T¢,! = a~'T. Therefore
b f(M)d7" = S8 aigaTiont = SF Jai(a™'T) = f(a'T). It follows
that g(T) = o¥¢af(T)p5", which implies ker g(T) = ker(¢of(T)p5!) =
= ¢o(ker f(T)), i.e. Vg = ¢pu(Vy). O
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Corollary 8. If a € K* and k > 1 then (<n>a") with0<j<k-1
J n>0
are a basis for Vix_q k.

Proof. We apply Lemma 7 to f = (X — 1)¥. We have g = o*f(X/a) =
= (X — a)*. Then ¢, is an isomorphism between Vy and V. By Lemma 6
20, ..., 251 is a basis for Vr, so ba(2Y), ..., ¢a(2F71) is a basis for Vy. But

Pa (xj ) = ¢a <(<n)> ) = ((n) a"> . Hence the conclusion. O
J7/ n>0 J n>0

We are now in a position to state and prove the main result.

Theorem. Let f = X* 4+ a1 X1+ ... 4ag € K[X] with ag # 0 and let
i, ...,Qs be the roots of f with multiplicities ki, ..., ks. Then the sequences

(G)0)...

with1 <i < s and0 < j < k;—1 are a basis for the space V; of all sequences
(xn)n>0 satisfying the recurrence relation

Tptk + A—1Tp+k—1 + - + apxn, =0Vn > 0.

Proof. We have f = (X — a;)* - (X — a,)*s. By Corollary 5 we have
Vi = ‘/(Xfoq)kl DD V(X—as)ks'
By Corollary 8 for 1 < ¢ < s the set

(), 0050

is a basis for V( X—ag)ki- By putting together these bases we obtain the basis

((T,l>a?> 1<i<s, 0<j<k—1
J n>0

for V. O

Note. The powers n/ which appear in the solution when the character-
n) While 1,..., X* ! are
J

. . X X
a Z-basis for {P € Z[X] : deg P < k}, the polynomials o)

E—1
are a Z-basis for {P € Q[X]: P(Z) C Z, deg P < k}.

istic is 0 are replaced by the binomial coefficients (
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Effective Error Bounds
GEORGE STOICAY

Abstract. Using the error estimates in the Moivre-Laplace approxima-
tion of the binomial distribution, we obtain effective error bounds for the
binomial coefficients.

Keywords: Binomial coefficients, Moivre-Laplace approximation.
MSC: 97H30

Given an even natural number n, it is easy to deduce using Stirling’s

formula, that
2n( n ) N #’ (1)
n/2 ™n/2

where the sign ~ is used to indicate that the ratio of the two sides tends to
1 as n — oo (see [1], Chapter II, section 9).
Using the following double inequality

/_27Tnn+1/267ne(12n+1)_1 <nl < /_27Tnn+1/267ne(12n)_1

valid for any n > 1 (not necessarily even), one obtains the error estimate in

(1):

P <3r:(91gn_+11)> 7T1n/2 =27 (732) = ﬂln/2 b <1§$?§nﬁ)> - (2)

The purpose of this note is to obtain a double inequality similar to (2),

in which ( 72> is replaced by (:), and that holds true within a certain
n
range of values k € {0,1,...,n} around the center 5

Let us start with the following result (in which one no longer assumes
that n is even).

Proposition. There exist universal constants C1,Cy > 0 with the fol-
lowing property: if a > 0 and (an)n>1 i a sequence of real numbers such that
an \ 0 as n — oo then, for anyn >1 and k € {0,1,...,n} satisfying

vanlogn < ‘k—g‘ < a,n?/3, (3)

DUniversity of New Brunswick, Saint John, Canada
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one has

i 2.1/3 —n (M &
%GXP(—Q%W ) <2 3 SW- (4)

Proof. We shall use the error estimate in the classical Moivre-Laplace
approximation of the binomial distribution (see [1], Chapter VII, section 3,

2/3

or [2], pg. 36), namely: under the assumption |k — g‘ < ay,n*/® we have

SO

where
lim sup len (k)| = 0. (6)

n—roo |k—n/2|<ann?/3

It follows that for all n > 1 and all k satisfying ‘k — g‘ < apn?/3, one

has

n\ 2 nA 2
%exp —72@;5) §2_”(Z>§%exp —720{;5) (7)

for some C4,Cy > 0 independent of n (due to the uniform limit in (6)).
As ‘k — g‘ < ann?/? | the left-hand side inequality in (7) is greater than
or equal to

& exp(—2a2nt/3).

D
On the other hand, as v/anlogn < ‘k: — g

lity in (7) is smaller than or equal to

, the right-hand side inequa-

Co
204172

53 exp (—2alogn) =

NG

and the proof is complete.

For instance, choosing a, = v/blogn-n~1/¢ for some b > 0, one obtains
from (3) and (4) the following effective error bounds, similar to (2):

Corollary. There exist universal constants C1,Cy > 0 with the follow-
ing property: if n > 1 and k € {0,1,...,n} satisfying

anlogn < [ < +/bnlogn
2

for some b > a >0, then

Cl _n(M 02
n2b+1/2 =2 <k> = n2a+1/2"
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Remark. Note that, from (5) and (6), it follows that both Cy and Cs

2
are very close to \/j as n — o0.
m
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Determinanti Gram si minime integrale
VASILE Pop")

Abstract. This note shows how to use the Gram determinant in order to
find the minimum value of some integrals.

Keywords: Gram determinant.
MSC: 11C20

Deoarece la concursurile pentru studenti apar numeroase probleme le-
gate de determinarea minimelor unor integrale, pe langa un rezultat teo-
retic clasic prezentam cateva probleme semnificative care ajuta la intelegerea
notiunilor si la pregatirea pentru concursuri.

Pentru notatiile si definitiile notiunilor folosite in aceasta nota reco-
mandam [1].

Teorema 1. Fie (V,(-,-)) un spatiu euclidian de dimensiune finita, v € V,
Vi C V subspatiu, x1 € V1 proiectia ortogonald a lui x pe Vi i :cll componenta
ortogonala a lui x relativa la subspatiul Vi.

Atunci distanta de la x la V1 este

Gvy,..., v, T
dla, V) = lat | = | ),
unde {vi,...,v;} este o bazd in Vi iar
G(viy...,v) = det[{v;, Uj>]i,j=1,k
este determinantul Gram al vectorilor vy, ve, ..., V.

Demonstratie. Pentru a arata ca d(z, Vi) = d(x,x1) este suficient sa aratam
cd |lxr — y1]| > ||Jx — x1]| pentru orice y; € Vi. Aceasta rezulta imediat din

relatia [lz — 11> = [lo1 — 9 ® + [lo1 ||, deci

d(z, V1) = ||z — 21| = [|21 ||

DTechnical University of Cluj-Napoca, Cluj-Napoca, Romania.
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Daca x € Vi, atunci este evident ca x = x; si distanta este zero. Daca

x ¢ Vi, atunci vectorii vy,...,v;,x sunt liniar independenti si prin ortogo-
nalizare Gram-Schmidt se transforma in vectorii ortogonali ey, ..., ek, €x+1,
unde e, ..., e, formeaza tot o baza in Vj iar
= (@,e)
err1 L Vi, erqr :x—z — e,
i—1 <e’i7 €i>

deci

k
T = Z (@ i) e; si :t:ll = epi1
- i S - ]
2 (e

Pe de alta parte se arata usor ca

G(Ul,...,?}k) = G(elv"'aek) - H61”2 et HekH27
G(v1,... v, @) = Gler,. .. ek, €p41) = H€1H2 Tl H%H2 : H6k+1H2
. . G(Ul e, Uk :C)
i atunci ||z7-|| = ||ex = A g
st atunci [l | = e \/ el

Observatia 2. Din Teorema, 1 se obtin in spatiile euclidiene R? gi R? distan-
tele de la un punct la o dreapta D sau la un plan P:

_ [z x d||

unde d # 0 este vector director al dreptei D, respectiv
Z,dy,d
iz, p) = (T d)|
l[dy % da|

unde dy, ds sunt vectori necoliniari din planul P iar (Z1,dy,ds) = T (d1 x dg)
reprezinta produsul mixt al vectorilor T, dy, ds.
(In general avem H@l X @2”2 = G(Ul,vg) si (51,@2,53)2 = G(@l,ﬂg,ﬁg).)

In cele ce urmeaza vom nota cu C([a,b]) spatiul euclidian al functiilor
reale continue definite pe intervalul [a, b] cu produsul scalar

b
(f,9) = /f(x)g(x)dx

Problema 3. Sa se determine valoarea minima a integralei
2m

/(a1 +agcos + - - 4 ap cos™ x + cos" T z)?dz, pentru ay,ag, ..., an € R.
0
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Solutie. Consideram spatiul euclidian C([0,27]). Distanta intre doua functii
f sl g este

2

d(f.g) = If - oll = / (f(z) - g(a))2da.

0

Luam f(z) = cos"*! x si atunci functia de minimizat este

#g) = d*(f.9),

cu
g(z) = —(a1 +agcosx + -+ +apcos" x), ap,ae,...,a, €R.

Multimea functiilor g formeaza subspatiul

Vi = Span{1,cos z,cos®,...,cos" x}
generat de functiile 1,cosz,cos®z,...,cos” z. Un exercitiu (util) arati ca
functiile 1, cos x, cos 2z, . . . , cos nx formeaza o baza in Vi si

1
cos" Tz = o cos(n + 1)z + fi(z),

unde f; € V1.
Avem:

1
min ¢(g) = d*(cos" ™z, V}) = d? <2—n cos(n + 1)z, V1>

1
G (1, cos ,...,COSNT, on cos(n + 1):1:)

G(1,cosz,...,cosnz) ~ 9
(matricele Gram care apar sunt matrice diagonale caci (cos kx, cospx) = 0
pentru k # p si (cos kx,coskz) =m, k> 1).

2 . RV . m
In concluzie valoarea minima a integralei este Son-

1
Problema 4. Si se determine valoarea minima a integralei / (f(z))*de,
1

unde f este un polinom monic de grad n cu coeficienti reali.

Solutie. Consideram spatiul euclidian C'([—1,1]) si avem de calculat minimul
functiei

1
P(ar,az,...,a,) = / (a1 + agz + -+ + apz" " +2™)° du,
—1
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care reprezinta patratul distantei de la functia ™ la spatiul polinoamelor de
n—1 _.n

grad < n— 1, notat R,,_1[z]. Ortogonalizand in R, [z] baza 1,z,...,2" " &
obtinem polinoamele lui Legendre

Pule) = (@ = 1)

si din Teorema 1 rezulta ca

n!? 1
" Baala]) = P = i [0 = 0710 = 17
—1

Integram prin parti tinind cont c& polinomul (z? —1)" si derivatele sale
pana la ordinul n — 1 se anuleaza in 1 gi —1 si obtinem:

1 1
—1)n!? —1)p 2
| Pall* = % /(ac2 — 1)z = % /(ac —1)™"(x+ 1)"de.

Integram din nou succesiv prin parti si obtinem

n!? nn—1)... nt4  22ntl

1
1 o
@n)2’ (n+1)(n+2)...(2n)/1(“1)2 =58

1Pa]f* =

1
Problema 5. Si se determine valoarea minima a integralei / (f(z))%dz
0

unde f este polinom monic de grad n cu coeficienti reali.
Solutie. In spatiul euclidian C ([0,1]), minimul cautat este patratul distantei
de la 2" la R,,_1[z] care, conform Teoremei 1, este
G(,z,..., 2" 1 ") Gy
G(l,x,...,a" 1)  Go’

(1,
1
1
Deoarece (xF,zP) / 2FPdr = k:+ EE determinantii G; gi Go
0

sunt determinanti Cauchy:

G =C(0,1,...,n;1,2,...,n+1) =
II &+p+1)

k,p=0

ﬂ_ n!? B nl? 1 0
Go (n+1)2---(2n+2)2(2n+3) (2n)12 2n+3°
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.
Files should be in PDF or DVI format. Once a problem is accepted and considered
for publication, the author will be asked to submit the TeX file also. The referee
process will usually take between several weeks and two months. Solutions may also
be submitted to the same e-mail address. For this issue, solutions should arrive
before 15th of July 2012.

PROPOSED PROBLEMS

1
351. Let (an)n>1 be a sequence of positive integers and let a > 3 such that

Z a, “ = oo. Prove that for any k > 2 there is an integer that can be represented
n>1
in at least k& ways as a sum of two elements of the sequence.

Proposed by Marius Cavachi, Ovidius University of Constanta,
Constanta, Romania.

352. Let K be a field and let m, n, k be positive integers. Find necessary
and sufficient conditions the integers a, b, ¢ should satisfy such that there exist some
matrices A € M, ,(K) and B € M, ;(K) with rank(A) = a, rank(B) = b and
rank(AB) = c.

Proposed by Nicolae Constantin Beli, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

353. Let f: [—1,1] — R be a continuous function which is differentiable at 0.
Denote

h
1) = | f)dz, helo,1].
/
Show that N
Tim o S™ (IR = S5 1F(0)]
k=1

(Here ¢ is the Euler’s totient function.)

Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh,
PA, USA, and Calin Popescu, Simion Stoilow Institute of Mathematics
of the Romanian Academy, Bucharest, Romania.

[e¢}
354. For x > 1, define the function f(z) = /e“wdt. Prove that there exists
1

L € C* such that lim xf(z) = L.
r—00
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Proposed by Moubinool Omarjee, Jean Lurgat High School, Paris,
France.

1
355. Let p be an odd prime number and a € [0; g] such that cosa = —.
p
1
Prove that for any n € N*, n > 1, there is no m € N* such that cos (na) = —.
m
Proposed by Vlad Matei, University of Cambridge, Cambridge, UK.

356. Let {b,}n>0 be a sequence of positive real numbers. The following
statements are equivalent:

b
Z|"+1 <ooforall7"6R

Z |bn+1 < 00;

iif) Z |bps1 — bn| < 0o and limb,, > 0;

bn
Z | +1 — < o0;
n+1
|bn+1
Z < oo for all r € R.
n+1

Proposed by Alexandru Kristaly, Babes-Bolyai University, Cluj-
Napoca, Romania, and Gheorghe Moroganu, Central European University,
Budapest, Hungary.

357. Find all functions ¢ : R — R with ¢(0) = 0 such that the set of functions
{¢+y |y € R} is a semigroup with respect to the operation ,,0”, the composition
of functions. Prove that this semigroup is a monoid if and only if ¢ is the identity
map.

Proposed by Dan Schwarz, Bucharest and Marcel Tena, Sfantul Sava
National College, Bucharest, Romania.

358. Prove that for any coloring of the latticial points of the plane with
a finite number of colors and for any triangle ABC having angles with rational
tangents there is a triangle with latticial vertices of the same color which is similar
to ABC.

Proposed by Beniamin Bogogel, West University of Timigoara,
Timigoara, Romania.

Editors’ note. Do not use the plane van der Waerden theorem, try a direct
solution.

359. Determine how many permutations of the 81 squares of the Sudoku
grid have the property that for any solution of the Sudoku game, if we apply the
permutation to the 81 squares we obtain another solution of the Sudoku game.
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Proposed by Nicolae Constantin Beli, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

360. Let M, (C) be the ring of square matrices of size n and A € M, (C). Show
that if for all k € N, k > 1, we have det((adj(A))* + I,,) = 1, then (adj(A))? = 0,.

(Here adj(A) denotes the classical adjoint of A, defined as follows: the (i, j)-
minor M;; of A is the determinant of the (n — 1) x (n — 1) matrix obtained by
deleting row i and column j of A, and the (i, j) cofactor of A is Cy; = (—1)"7 M;;.
The classical adjoint of A is the transpose of the “cofactor matrix” C;; of A.)

Proposed by Marius Cavachi, Ovidius University of Constanta,
Constanta, Romania, and Cezar Lupu, University of Pittsburgh,
Pittsburgh, PA, USA.

361. 88% of the surface of a sphere is colored in red. Prove that there is a
cube inscribed in the sphere with all vertices red.

Proposed by George Stoica, University of New Brunswick in Saint
John, Saint John, NB, Canada.

362. Given a function f: X — X, we will denote
fO(X) =X, fn(X) = f(fnfl(X)) forn > 1,
fuo(X) = ) falX).

n>0

i) Prove that f(f,(X)) C fu(X).

ii) Prove that for X = R and f a continuous mapping, f,(R) is R, a half-line,
a bounded segment, a singleton, or the empty set.

Moreover, let it now be given that f(f,(R)) = fu(R).

iii) Prove that if f,(R) is bounded, then it is a closed interval (possibly de-
generate — a singleton or the empty set). Give examples for each of these cases.

iv) Give an example for f,(R) being an open half-line.

Proposed by Dan Schwarz, Bucharest, Romania.

363. For a given sequence (xy)n>1 of real numbers and ng a fixed positive
integer, consider the following conditions:
(C1): n®*(xpi1 — 2n) — (2n + 1)z, has the same sign for all n > n;
(C9): Tpam < Ty + T for all n,m # ng;
oo

(Cs): Zn_zxn < 005
n=1
(Cy): lim In _o.
n—oo M
Prove that:
(a) none of (C1), (C2), (C5) implies (Cy);
(b) (Cy) follows from (C3) and either (Cy) or (C2);
(c) the converse of b) is false.
Proposed by Arpad Benyi, Western Washington University,
Bellingham, WA and Kasso Okoudjou, University of Maryland, College

Park, Washington DC, WA, USA.
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364. Let (r,,)n>1 be a sequence of real numbers such that

limsup((1 — z,,) logn) < oco.
n—oo
Show that if the series of positive reals Z a,, converges, then the series Z arr
n>1 n>1
also converges.
Proposed by Cristian Ghiu, Politehnica University of Bucharest,
Bucharest, Romania.

SOLUTIONS

323. Let C be the set of the circles in the plane and L be the set of the lines
in the plane. Show that there exist bijective maps f,g : C — L such that for any
circle C' € C, the line f(C) is tangent at C' and the line g(C) contains the center
of C.

Proposed by Marius Cavachi, Ovidius University of Constanta,
Constanta, Romania.

Solution by the author. If A is an well ordered set and o € A we denote
Ay = {a € A|a < a}. We prove that there is an well ordered set A of cardinal
c := |R| such that |A,| < ¢ Yoo € A. To do this we take a well-ordered set M with
|M| = c. If there is &« € M with |[M,| = c then let M’ = {a € A | |M,| = c} and let
g be the smallest element of M’. Then [M/, | = c and if we denote M" = M, then
for any o € M" we have o < ap, so |[M/'| = |M,| < ¢ and we may take A = M".

Let C be the set of all circles in the plane and let £ be the set of all lines in
the plane. Since |C| = |£| = ¢, the order relation from A may be transported to C
and L. The function f will be constructed by transfinite induction. First we take
¢p = minC and we define f(cg) as the smallest element Iy of £ that is tangent to co.

Assumed that for some ¢ € C we have already defined f(¢’) V¢’ < ¢. Since
N := C. has a cardinal which is smaller than c, there are lines tangent to ¢ that
are not contained in N. Let [ be the smallest of these lines and define f(c) = .
Obviously f is injective.

To prove the surjectivity, assume that £\ Im f # () and let € £\ Im f. Since
the set of the circles tangent to [ has cardinal ¢ and |£;| < c, there is some ¢ € C
which is tangent to ! such that f(c) ¢ L, i.e., f(c) > 1. On the other hand, f(c) is
the smallest element of X := {d € L | d tangent to c}\ f(C.). Since l ¢ Im f D f(C,)
and [ is tangent to ¢, we have | € X and so f(c) < [. It folows that f(c) =, so
¢ € Im f. Contradiction.

The function g is constructed the same way but with the property “a line is
tangent to a circle” replaced by the property “the line contains the center of the
circle”.

324. Consider the set

K := { f(v20,V500) | f(X,Y) € Q[X,Y]}.

(a) Show that K is a field with respect to the usual addition and multiplication
of real numbers.

(b) Find all the subfields of K.
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(c) If one considers K as a vector space oK over the field Q in the usual way,
find the dimension of gK.
(d) Exhibit a vector space basis of K.

Proposed by Toma Albu, Simion Stoilow Institute of Mathematics
of the Romanian Academy, Bucharest, Romania.

Solution by the author. (a) Note that K is exactly the subring Q[v/20, v/500]
of R obtained by adjoining to Q the algebraic elements v/20 and /500 over Q, so
as it is well known from any undergraduate General Algebra course, K is a subfield
of R, and the field extension Q C K is finite, in other words, the vector space oK
is finite dimensional. The dimension [K : Q] of this vector field will be determined
in (c).

(b) For simplicity, denote a := /500, b := +/20, ¢ := %/500. Then
a= W24.55 b= W26.53 ¢ = %/22.53. Easy calculations show that a = ¢?,
b=10c-a"2, so a € Q[c], and then, also b € Q[c]. It follows that K = Qla, b] C Q[c].
Since ¢ = 107'a?b, we have ¢ € Q[a,b], and hence Q[c] C Qla,b]. We deduce that
K = Q[¢].

In the sequel we will freely refer to some basic results of Cogalois Theory, as

exposed in [1]. First, observe that the field extension Q C K is a Cogalois extension
with Cogalois group Cog(K/Q) = Q*(c)/Q*, where

Q*(c):={a-c"|aeQ*, nelZ}

see Examples 3.2.1 (1) in [1]. By Theorem 3.2.3 in [1], all the intermediate fields of
the Cogalois extension Q C K, that is to say, all the subfields of the field K, are
exactly Q[H], where H/Q* is a subgroup of Cog(K/Q).

Clearly Cog(K/Q) = Q*(c)/Q* = (¢) is a cyclic group of order 12 generated
by the coset ¢ = ¢Q* of ¢ in the quotient group Q*{c)/Q*, so its subgroups are
precisely the following ones:

(@), (), (), (1), (), {12).
Consequently, all the subfields of E are:

Q, Q[d, Q[*), Q[¢°], Q[¢*], Q[
where ¢ = X/500.

(c) Since the extension Q C K is Cogalois, we have
[/ : Q] = |Cog(K/Q)| = 12.

(d) By basic properties of Kneser field extensions, a vector space basis for the
Cogalois extension Q C K is easily obtained as soon as we have listed, with no
repetition, all the elements of its cyclic Cogalois group Q*(c)/Q* = (¢) of order
12: any set of representatives of the cosets from this list is a basis of the extension.
Consequently such a basis is the set { /500" [0 <i< 11}

Remarks. More generally, let

E:=Q[%ar,..., Yar)
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and
*/n ny
G:=Q"("Va1,...,a,)
i —k o — ki _
={a- VWai"' ... -Wa, " |a€eQ,0< ki <n;, V1<i<r},
where r, ny,...,n, are nonzero natural numbers and a1, ..., a, are positive rational

numbers. Then, by the Kneser Criterion (see Theorem 2.2.1 in [1]), the extension
Q C F is G-Kneser extension, so

[Q[Var,...,Var]: Q] = Q" (Va1,..., Var)/Q"].

Moreover, this extension is G-Cogalois, so, by Theorem 4.3.2 in [1], all the inter-
mediate fields of the G-Cogalois extension Q C F, i.e., all the subfields of the field
E, are exactly Q[H], where H/Q* is a subgroup of its Kneser group G/Q*. So,
knowing all the subgroups of this Kneser group, we can completely describe all the
subfields of Q["V/ay,..., "/ar].

As in the particular case considered above, a vector space basis for the exten-
sion Q C F is easily obtained as follows. List, with no repetition, all the elements
of its Kneser group Q*("/a1,..., /a, )/Q"; then any set of representatives of the
cosets from this list is a basis of the extension.

REFERENCES

[1] T. Albu, Cogalois Theory, A Series of Monographs and Textbooks, Vol. 252, Marcel
Dekker, Inc., New York and Basel, 2003.

325. We call toroidal chess board a regular chess board (of arbitrary dimen-
sion) in which the opposite sides are identified in the same direction. Show that the
maximum number of kings on a toroidal chess board of dimensions m x n (m,n € N)

such that each king attacks no more than six other kings is less than or equal to
dmn

and the inequality is sharp.

Proposed by Eugen Ionagcu, Columbus State University, Columbus,
GA, USA.

Solution by the author. Let us denote by x; ; (i =0,...,m—1,7=0,...,n—1)
mn variables for each square of the board. These variables take the value 1 if a king
is placed on the (4, j) position or 0 otherwise. The condition that we required in this
problem is equivalent to

24,5+ i1 i1 T Tt FTi 1, o1 T L1, T T 1§ T i1, 41 Tl T L1 g1 <8

for all possible 7, j and the operations are done modulo m on the first component and
modulo n for the second component of the indices of x,;. Let us put k = Z Tij-
0,J
. . C dmn
Adding all these inequalities gives 2k+ 8k < 8mn. Therefore k < 5 An example

that shows that this estimate is sharp when 5 | m and 5 | n is given in the figure
below. (In our case m = 10, n = 15.)
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1|11 j1{0of1|1|1j1j0j1j1f{1f1]0
1jo0(1f(1f{1f1|j0|1{1j1j1f{0f1|1]1
1j1(1jo0f1f1|1j1{0j1j1f{1f{1)0]1
oj(rf1j1j1{oj1j1f{1rf1rjo0j1j1j1]1
1j1(0fj1f{1f1|1j0f{1j1j1f{1f(0|1]1
1|11 j1{of1|1j1j1j0j1j1f{1f1]0
1jo0(1j1f{1f1j0j1{1j1j1{0f1|1]1
1|11(1j0f1f1|1j1{0j1j1f{1f1|0]|1
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o0 tn
326. For t > 0 define H(t) = —— . Show that
®) Z nl(n +1)!

n=0
. t3AH(t) 1
lim = .
oo exp(2vE) 2V
Proposed by Moubinool Omarjee, Jean Lurcat High School, Paris,
France.

Solution by the author. As a first step we prove that
1 s
H(t)=—= /cosuexp(?ﬁcos u)du for t > 0.
T/t ),

Indeed, we have

17 -
w—\/f /cosuexp(Z\/I_fcos w)du = Z%hn(u),
0 n=

on t n—1 n+1
where hy,(u) = (Vi)' cos T u and we have

!
271,\/¥n—1
lhall = sup [hn(w) = 2"

uw€[0,27] mn!

Then

mn!
n=0

1 = > 27»(\/%)71,—1
—— [ cosuexp(2v/tcosu)du = ——— 1141,
— [ cosues( Ju ="
0
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where

, ] gy {0 if m is odd
= COoS  uau = )
" m2728 (%) if m = 2k,

0
This leads to

o on T n—1 o 22n+1tn ) 2 o tn
PR LRI .W22n2< n+ ) -y
— = m(2n+1)! n+1 — nl(n+1)!

as claimed.
Next we note that cosu < 0 when

o N

<u <, so

17 17
— [ cosuexp(2Vtcosu)du <—/ cosuldu — 0 when ¢t — oo.
— [ eosuesp(2vicosuydu| < — [ feosul

Z bl

z
For the integral A(t) = / cos 1 exp(2v/t cos u)du the change of variables v = 1—cos u
0
gives
1
1— —2uV/t
At) = 2Vt / v,
5 \/ 1-— b vV 2v
After two more changes of variables, y = 2vv/t and w = \/y one gets
1 \/Et% w?
1—v e 2wVt 1 T 2vi —w
=7 5 dyzg ¢ dw
A o ViTaz

By Lebesgue dominated convergence theorem one gets

1 o'}
1 1-— —2vvi
tz VV 2 dv — /e_wzdw = ﬁ when ¢t — oo,
\/ 1-— b} vV 2v 2
0 0
S0
A(t) ~ e2Vt. \/?
2t
and, finally
1
H(t) ~ -2, YT
T/t 2ts
327. (Correction) Let f : [a,b] — R be a convex and continuous function.
Prove that: ) -
a) M(a;b)—i—f(a;— > >2/\/l< a: ; z—a>;
2a+b 2b 3a+b 3b
b) 3M ( ”; ; ;”) + M (asb) > 4M ( ”: : Z”)
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Y
1
Here M(z,y) = /f(t)dt.
y—x
xT

Proposed by Cezar Lupu, Politehnica University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanta,
Romania.

Solution by the authors. a) We use Popoviciu’s inequality from [1]. (See also
[2], pag. 12.) It states that for any convex function f defined on an interval [a, D]
and any z, y, z € [a, b] we have

@)+ f(y) + F(2) +3f (%) > of ("E—;y> tof (“Z) ey (y"gz>

2
. e, . a+b
By applying Popoviciu’s inequality to z, —5 @ +b—2x € [a,b], we get

a-+b

f(m)+f< 5 )+f(a+b—x)+3f<a;b> >

Z2f<a—|-b4—|-291:) +2f(a—2i—b) +2f(3a+?;b—2x>.

We integrate on [a, b] and after suitable changes of variables we obtain

a7 (2 2 [ o >

at
£

f(z)dez,

a+b
4

which is a).

a+b a+b

For b) we use again Popoviciu’s inequality but this time for z, 5 5 € la, b].

We have
a+b a+b+x 2x+a-+b a-+b
f(x)+2f( 5 >+3f(73 >>4f(74 )+2f( > )

After we integrate on [a, b] and make the suitable changes of variable we get

=w b o
9 / f(a:)dx+/f(a:)dx28 / f(z)dez,
2a4b a 3atb
3 4
i.e. we have b).
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328. Given any positive integers m, n, prove that the set
{1,2,3,...,m"*""}

can be partitioned into m subsets A1, Ao, ..., A,,, each of size m™, such that
Za]fzz:agz...: Z a]fn, forall k=1, 2, ..., n.
a1 €A, az€A> am€Am

Proposed by Cosmin Pohoatd, student Princeton University,
Princeton, NJ, USA.

Solution by Marian Tetiva. This is an immediate consequence of Prouhet’s
theorem, old since 1851. It has the same statement as the present problem but with
{1,...,m"* 1} replaced by A := {0,...,m"*? — 1}, i.e., the set of natural numbers
with at most n + 1 digits when written in base m.

Basically the set A; will contain precisely those numbers in A whose sum of
base m digits is congruent to 5 modulo m. A solution can be found in The American
Mathematical Monthly from April 2009, pages 366-368 (solution of problem 11266).
In addition, there one can find many references on this and related topics, such as
Tarry-Escott problem.

To obtain our result one only has to note that if A = A;U---UA,, is a partition
with the property that |A,| is the same for all j and for 1 <k <n Z a” is the

acCAj
same for all j then for any x the set a+ A := {z+a | a € A} has a similar partition.
Namely 2 + A = (z + A1) U--- U (v + A). Indeed, if |A;] = Sy and Z a® =Sy,
acA;
for all j and for 1 < k < n then for every 1 < j < n we have |z + A;| = Sy, and if
1 <k <n then

k k
Z W= Z (z+a)k = Z Z (k)xk_lal = Z (k)xk_lsl,
bEx+A; a€A, a€A; 1=0 ! = \!

which is independent of j.

329. Let p > 11 be a prime number. Show that, if
(pzli/Q 1 a
67
= b

with a, b relatively prime, then p divides a.
Proposed by Marian Tetiva, Gheorghe Rogca Codreanu National
College, Barlad, Romania.

Solution by the author. The inverses modulo p of the quadratic residues

2
—1
12,22,..., (pT are precisely the same quadratic residues, in some order. For

proving this claim one can observe that the inverse of a quadratic residue is a qua-

. . . p— . .
dratic residue, too, and the inverses of the nonzero quadratic residues are

mutually distinct.
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-1
Denote, for every j from 1 to pT’ by k; the unique integer with the proper-

ties 1 < k; < b and j2k? =1 (mod p). Then, by the above observation,

2
p—1
{kf,k%,...,k(zp_lm} _ {12,22,.”, (T) }

We thus have

and

The last congruence follows by using the formula

zn:jﬁ ~ n(n+1)2n+1)(3n* + 60 —3n+1)
7j=1

42
oy .
according to which (for n = pT) Z 39 is divisible by QPT +1 = p, unless p
j=1

is one of the primes that divide 42, hence the divisibility is true for either p = 5 or
p > 11. The two congruences above solve our problem.
Actually one can see that the property is true if and only if p =5 or p > 11.

330. Determine all nonconstant monic polynomials f € Z[X] such that
o(f(p)) = f(p—1) for all natural prime numbers p. (Here ¢ is the Euler totient
function.)

Proposed by Vlad Matei, student University of Bucharest,
Bucharest, Romania.

Solution by the author. We will use the following property of polynomials with
integer coefficients:

(C) for all a,b € Z,a — b divides f(a) — f(b).

First we prove that f(0) = 0. Let us assume the contrary, f(0) # 0. Then
for a fixed prime p > |f(0)] we deduce from (C) that f(p) = f(0) (mod p), so
ged(f(p),p) = 1. According to Dirichlet’s theorem, there are infinitely many primes
in the arithmetic progression p + rf(p). Let pi be the kth prime in this sequence.

Again from (C) we deduce that f(p+rf(p)) = f(p) (mod f(p)) for any integer

1
r, 50 f(p) | f(px). From the fact that @ = H 1- a) we can easily deduce

g prime
qla
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that for ¢ | a we have M < SD( ) . This implies o (pr)) < olf (p))’ that is,
a c f(px) f(p)
flow=1) _ o(f(p)
o) = o) .
Let us note that lem pr = oo. Putting h(X) = f(X — 1), we observe that

h
h and f have the same degree and both are monic polynomials, so lim —= =

z—o00 f (aj
: . flpr—1) . o .
This means that lim ————= = 1. Passing to limit in (1), we obtain 1 <
koo f(pr) f(p)
so f(p) < ¢(f(p)). We conclude that f(p) = 1. But this can not hold for infinitely

many primes p, since then f would be a constant polynomial, which contradicts the
hypothesis.
So f(0) =0. Let f(X)= X’g(X) with g(0) # 0 and i a positive integer.

i—1
The hypothesis gives that (p%l) ©(g(p)) = g(p — 1) for all primes p not

dividing ¢(0). We assume that g is nonconstant, and arguing as above we get an
i—1
9, —1) _ #lg(p) ( P ) .
9pk)  — gp) \pp—1
v(9(p)
9(p)

Thus g(p) = 1 for infinitely many primes p, so g = 1, a contradiction with the
assumption that g is not constant. So g(X ) = ¢ and from the fact that f is monic

infinite sequence of prime numbers pj, such that

Again we pass to limit as £k — oo and obtain 1 <

i—1
we get ¢ = 1. We are left with (Ll) =1 for all prime numbers p, so i = 1.

This means that the only solution is f(X) = X.

331. Let B, = {(z1,...,2n) € R" | 2; < zyqofor 1 < i < n —2} and let
B = U B,,. On B we define the relation < as follows. If z,y € B, x = (21,...,Zm)
n>1
and y = (y1,...,Yn), we say that ¢ < y if m > n and for any 1 < i < n we have
either x; < y; or 1 < i < m and x; + x;41 < yi—1 + y;- Prove that (B, <) is a
partially ordered set.
Proposed by Nicolae Constantin Beli, Simion Stoilow Institute
of Mathematics of the Romanian Academy, Bucharest, Romania.

Solution by the author. Let x,y,z€B, v = (x1,...,Zm), ¥y = (Yy1,-..,Yn) and
Z = (21,...,2,%).

We first prove that if x <y then x; + x;41 < y; + yiqp1 forany 1 <i<n—1.
We have three cases.

If ; <y, and 541 < yipq then o3 + zip1 < yi + Yig1-

If z; > y; then z; + 2501 <1 + i <Y + Vi1

If 2511 > yiq1 then x; + 2541 < Tiq1 + 2igo < Y + Yig1-

Similarly if y < z then y; + yi+1 < z; + 241 for 1 <i <k —1.

We now prove that < is an order relation.
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To prove the transitivity, assume that x < y and y < z. We want to prove
that x < z. We have m > n and n > k, so m > k. We have to prove that for any
1 <4<k we have z; < z; or x; + ;41 < 2z;—1 + z;. There are three cases.

If x; <y; and y; < z; then x; < z; and we are done.

If o3 > y; then z; + 231 <y +yi < zim1 + 2.

If y; > 2; then o + 541 < ys + yit1 < zimo1 + 2.

The reflexivity is trivial. We have m > m and z; < x; for 1 <i<msox < z.

To prove the antisymmetry, assume that * < y and y < . Then m > n
and n > msom =n. Forany 1 < i < m —1 we have z; + ;41 < yi + Yit1
and y; + Yit1 < @ + Tit1, SO T + Tip1 = Yi + Yir1. The condition at ¢ = 1 from
the definition of z < y is 1 < y;. Similarly y1 < z1 so 1 = y;. From z1 = y,
T1+T2=yY1+Y2, T2+ T3 =Y2+ Y3, -, Tm—1 + Tm = Ym—1 + Ym ONE gets z; = y;
forl<i<msoz=y.

S
332. For a positive integer n = pr‘ denote by Q2 Zaz the to-
i=1

tal number of prime factors of n (counting multiplicities). Of course, by default
Q(1) = 0. Define now A(n) := (—=1)* and consider the sequence & := (A(n)),>1.
Prove the following claims on &:

a) It contains infinitely many terms A(n) = —A(n + 1).

b) It is not ultimately periodic.

¢) It is not ultimately constant over an arithmetic progression.

d) It contains infinitely many pairs A(n) = A(n + 1).

e) It contains infinitely many terms A(n) = A(n+ 1) = 1.

f) Tt contains infinitely many terms A(n) = A(n + 1) = —1.

Proposed by Dan Schwarz, Bucharest, Romania.

Solution by the author. Notice that Q(mn) = Q(m) 4+ Q(n) for all posi-
tive integers m,n (€2 is a completely additive arithmetic function), translating into
A(mn) = A(m) - A(n) (A is a completely multiplicative arithmetic function), hence
A(p) = —1 for any prime p, and A\(k?) = A\(k)? = 1 for positive integers k.

The start (first 100 terms) of the sequence & is

1,-1,-1,1,-1,1,-1,-1,1,1,-1,—1,-1,1,1,1, -1, -1, —1, -1,
1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1, —1,1,1, 1,

1 1-1,-1, 1,1, 1,11, 1,1, -1, -1,1,1,1,1.1, — 1,1,
S S, =1, 1 1 =1, =1, =1, — 1,1, 1, —1, 1,1, 1, —1,
1,1,-1,1,1,1,1,1,—1,1,1,-1,1,1,1,1,—1,—1,—1, 1.

a) According with the preliminaries, & is therefore not ultimately constant,
hence the thesis.

b) Assume there exist t,k such that A(n +t) = A(n) for all n
n = mt > k; then A((m + 1)t) = A(mt), so A(m + 1) - A(t) = A(m) -
A(m + 1) = A(m) for all large enough m, at odds with part a).

¢) We have to prove that, given a € N, b € Z, then A(an + b) is not constant
for n > ng (a stronger result than that of point b)). Take first M € N large enough
so b =aM + b > 0; also take n = kb’ + M. Then

Aan 4+ b) = A((ak + 1)b') = Xak + 1) - A(V).

> k. Take
A(t)

(t), hence
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But A(ak+ 1) = —1 when ak + 1 is a prime, infinitely often for k¥ € N (by Dirichlet’s
theorem), while A(ak + 1) = 1 when ak + 1 is a perfect square, and it is enough to
this purpose to take k = af? + 2/, so then ak + 1 = (al + 1)2.

d) Take one of the subsequences (A(k), A(k + 1)) = (1,—1). Then we have
A2k) = A2) - A(k) = =1, and M2k +2) = AN2) - Mk + 1) = 1; we will call
this the “doubling” of the subsequence (1,—1), producing (—1,7,1). Now, both
?=MA2k+1)=1and ? = A2k + 1) = —1 create a pair of consecutive terms of
same value, hence the thesis.

e) The Pell equation 22 — 632 = 1 has infinitely many solutions in positive
integers; all solutions are given by (z,,yn), where z,, + 1,v/6 = (5 + 2v/6)". Since
A(6y?) = 1 and A(6y?+1) = A(z?) = 1, the thesis is proven (an alternative approach
is to do like in what comes next).

Alternative Solution. Take any existing pair A(n) = A(n + 1) = 1. Then

M@2n+1)2 —1) = Adn? 4+ 4n) = \4) - AM(n) - A(n+1) =1,
and also A((2n + 1)2) = A\(2n + 1)? = 1, so we have built a larger (1, 1) pair.

f) The Pell-like equation 322 —2y? = 1 has infinitely many solutions in positive
integers, given by (2, yn), where z,v/3+y,v2 = (v/3+ \/5)3"_1. Since \(2y?) = —1
and A(2y? + 1) = A(322) = —1, the thesis is proven (an alternative approach is to
do like in what comes next). Next, assume (A(n — 1), A\(n)) is the largest (—1,—1)
pair, therefore A(n + 1) = 1 and A(n? + n) = A(n) - A\(n + 1) = —1, therefore again
A(n? +n+1) = 1. But then A\(n®> — 1) = A(n — 1) - A\(n? + n+ 1) = —1, and also
A(n?) = A(n)® = —1, so we found a yet larger such pair, contradiction. Assume
the pairs of consecutive terms (—1,—1) in & are finitely many. Then from some
rank on we only have subsequences (1,—1,1,1,...,1,—1,1). By “doubling” such a
subsequence (like at point b)), we produce

(-1,2,1,2,-1,2,-1,7,...,2,—1,2,1,7, —1).

According with our assumption, all 7-terms ought to be 1, hence the produced

subsequence is
(-1,1,1,1,-1,1,-1,1,...,1,—-1,1,1,1,—-1),

and so the “separating packets” of 1’s contain either one or three terms. Now assume
some far enough (1,1,1,1) or (—1,1,1,—1) subsequence of & were to exist. Since it
lies within some “doubled” subsequence, it contradicts the structure described above,
which thus is the only prevalent from some rank on. But then all the positions of the
(—1)-terms will have the same parity. However though, we have A\(p) = A\(2p?) = —1
for all odd primes p, and these terms have different parity of their positions. A
contradiction has been reached.?

We have thus proved the existence in & of infinitely many occurences of all
possible subsequences of length 1, viz. (1) and (—1), and of length 2, viz. (1,-1),
(_17 1)7 (1a 1) and (_17 _1)'2)

DUsing the same procedure for point e), we only need notice that A((2k + 1)?) =
= \((2k)?) = 1, and these terms again are of different parity of their position.

2Is this true for subsequences of all lengths ¢ = 3,4, etc.? If no, up to which length
(> 927
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Remark. See Sloane’s Online Encyclopaedia of Integer Sequences (OEIS),
sequence A001222 for 2 and sequence A008836 for A, which is called Liouville’s
function. Its summatory function Z A(d) is equal to 1 for a perfect square n, and 0

d|n

n
otherwise. Pdlya conjectured that L(n) := Z A(k) <0 for all n, but this has been
1

k=
proven false by Minoru Tanaka, who in 1980 computed that for n = 906, 151, 257 its
n
Ak
value was positive. Turdn showed that if T'(n) := Z % > 0 for all large enough
k=1
n, that will imply Riemann’s Hypothesis; however, Haselgrove proved it is negative
infinitely often.

Solution by Marian Tetiva. Evidently, any of the parts e) and f) implies d);
yet, part ¢) implies b), since if S is ultimately periodic there exist ng € N* and
p € N* such that A(n 4+ p) = A(n) for all n > ny, therefore S is constant over the
arithmetic progression (ng + kp)r>1. So we will prove parts a), c), €), f) — in order
f), a), e), c).

First, let (ug,vx) be the general solution of the Pell equation u?— 6v? = 1,
that is uf —6vi = 1 for all k € N (ug = 1,099 = 0,u; = 5,v17 = 2 and so on;
up +vp V6 = (5—}—2\/6)’C for all k) and let xp, = ug + 2v, yr = ur + vy, for all k € N.
We then have

327 — 27 = 3(up + 2v)? — 2(up, + 3vp)? = ui — 6v; =1

for all £k € N.

Consider ny = 2y3, hence nj, + 1 = 3z7. Clearly, A(ng) = A(ny + 1) = —1 (as
each of 2y? and 3z% has an odd number of prime factors), thus part f) is solved.

A similar argument with the solutions of the Pell equation z? —2y? = 1 proves
that there are infinitely many n with A(n) = —1 and A(n + 1) = 1 (take n = 2y?,
hence n + 1 = 2, for such a solution (z,y)). On the other hand, with n = 22 and
n+ 1 = 2y? for a solution (z,y) of 2% — 2y?> = —1, we find infinitely many n for
which A(n) =1 and A(n 4+ 1) = —1. This solves part a) (in two ways).

Now let ny =9 and nyy1 = 4ng(nk +1). We have A\(n1) = AM(n1 +1) =1 and
inductively we see that A(ng) = A(nk + 1) = 1. Indeed, if this is true for k, then it
is true for k + 1, too, because ni41 = 4ng(nk + 1) has also an even number of prime
factors (as ng and ngy; have), and njy1 + 1 = (2ns + 1)? obviously has an even
number of prime of factors. This sequence (ny)r>1 solves part e).

Now for part ¢) let us suppose by contradiction that there exist a,b € N*
such that A(a + nb) = A(a) for all n € N. Consider the greatest common divisor
d = ged(a, b) of a and b, and let @ = daq, b = dby with a; and by relatively prime po-
sitive integers. According to Dirichlet’s theorem, there is an s such that a1+ sb; = p
is a prime, and from [1, Problem 16, Chapter 13] there exists ¢ such that a1 +tb; = gr
is a product of two primes ¢ and r (actually this is also an immediate consequence
of Dirichlet’s theorem). Then

A(dp) = A(d(a1 + sb1)) = Aa + sb) = A(a)
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and A(dgr) = A(d(a1 + th1)) = Aa + tb) = A(a), therefore A(dp) = A(dgr), which
is definitely false. Thus our assumption is wrong, and the sequence S cannot be
constant over any arithmetic progression. The problem is completely solved.

A slightly different form for the proof of this part can be found in [2].
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333. Show that there do not exist polynomials P,Q € R[X] such that
loglogn

P(z
/ ( )dx

Q(x)

0

where p,, is the nth prime number.
Proposed by Cezar Lupu, Politehnica University of Bucharest,

Bucharest, Romania, and Cristinel Mortici, Valahia University of
Targovigte, Targoviste, Romania.

1 1 1
=—+—4--+—,n2>1,
P1r P2 Pn

Solution by the authors. Let us denote by p,, the nth prime number. From the
prime number theorem we know that

m(x)

T

~ logax’

Now, if we put x = p,, we have n ~

and by taking the logarithm we deduce
0g Pn
logn ~ log p, — loglogp,,. On the other hand, we have

logn 1 loglog py,
log pn log pn

)

. . loglogx
and since lim ———
z—oo  logw

the fact that n ~ Pn
0g Pn
(Py)n>1 defined by

= 0, we finally obtain logn ~ logp,. Combining this with

, we obtain that p,, ~ nlogn. It is obvious that the sequence

1 1 1
Pn:—+—+...+_
P11 P2 Pn
g I |
diverges because Z — ~ Z Toan which is the celebrated Bertrand serie.
— pn ‘=, mlogn

Now we shall prove that the sequence (M,,)n>2 defined by
M, = P, —loglogn

is convergent. We have M,, 1 —M,, =

P (loglog(n+1)—loglogn). On the other
n+1
hand, it is well-known that p,, > nlogn,V¥n > 1, and by the mean value theorem
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applied to the function loglog x, we infer the inequality

! < loglog(n 4 1) — logl <
(n+1)log(n+1) 0B8N cglogn nlogn

,Vn > 1.

From these inequalities we derive that the sequence M, is strictly decreasing.
However, as it is shown in [1], there exists lim M, = B, where B is called the Brun
n— oo

constant.

log 1
We also have M,, — M,,_1 ~ —LOan. One the other hand,
nlog®n
loglogn P( )
T
M, — M, 1= / dz — (loglogn — loglog(n — 1)).
loglog(n—1)

By the mean value theorem, there exists a, € (loglog(n — 1),loglogn) such
that

P log 1
M,, — M,,_1 = (loglogn — loglog(n — 1)) ( (an) _ 1) . _-oglogn

Q(an) nlog’n’

which is equivalent to

P(ay,) loglogn
nlogn(loglogn — loglog(n 1))<Q(an) 1) logn

But after some computations one finds
xn, = nlogn(loglogn —loglog(n — 1)) — 1

loglogn

and — 0 asn — oo.

P(an)
Q(an)

and, if P(z) = apzP+---+o1z+ap and Q(z) = BpazP +- - -+ B1x+ fo, then oy, = .
We finally obtain

logn
‘We obtain

— 1. Since a,, — oo this implies that deg(P) = deg(Q) =: p

Pi(ay) loglogn
xn . ~ —
Q(an) logn
where deg(P;) = r < p = deg(Q) Therefore

bian) (loglogn)p’”“.< an >”‘”"

Yn = n Q(ay,) i B logn loglogn

Obviously y, = 1-L # 0 and z, — —0-1 = 0, which gives a contradiction.

1 1 p—r+1 p—r+1
The last limit follows from (log ?gg) . — — 0 for u = loglogn — oo.
ogn e

= Zn.
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334. (Correction) Let a, b be two positive integers with a even and b = 3
(mod 4). Show that a™ + b™ does not divide a™ — b™ for any odd m,n > 3.

Proposed by Octavian Ganea, student Ecole Polytechnique Fédérale
de Lausanne, Lausanne, Switzerland.

Solution by the author. Since m is odd and > 3 we have ™ + 0" =0+ 3 =
=3 (mod 4). It follows that a™ 4+ ™ has a prime factor » = 3 (mod 4).

m —_pm b
We have ™ = —b™ (mod ) so (2) = (a_) = < > = — (—) because
r r r r
r =3 (mod 4).
If a™ + b™ | a™ — b™, then we also have r | a™ — b"™ and by the same reasoning

a b .
as above we get (—) = [ - ], a contradiction.
r r

335. Let m and n be positive integers with m < n and A € M, »(R),
B € My, (R) such that rank A = rank B = m. Show that there exists C € M,,(R)
such that ACB = I,,,, where I,,, denotes the m by m unit matrix.

Proposed by Vasile Pop, Technical University Cluj-Napoca,
Cluj-Napoca, Romania.

Solution by Marian Tetiva. If m = n there is nothing to prove (just choose
C = A71B1), so we consider further that m < n.

Let P be an n X n permutation matrix such that the determinant of the
submatrix of AP with entries at the intersections of its m rows and first m columns
is nonzero. Let M be the (n —m) x n matrix consisting of two blocks as follows:

M:( On—m,m In—m )
and let A; be the n x n matrix
AP
)

Using Binet’s rule for computing determinants, one sees that det A; # 0, hence
A; is invertible in M, (R).

Similarly, because B has rank m, there exists an n X n permutation matrix Q
such that @B has a nonsingular submatrix with entries at the intersections of its
first m rows and its m columns. Putting

Infm

N:(Om’"m> and Bi=(QB N ),

one sees that By is an invertible n x n matrix.
We consider C = Ay B!, thus we have

AP APCIQB  APCIN
In—A1C131_( M >CI(QB N)_(Mclb% MC’JV )’

whence (by reading the equality for the upper left m x m corner)
I, = APC1@QB follows. Now, for C = PC1Q (which is an n x n matrix), we get
ACB = I,,, and finish the proof.

Remark. The solution shows that we can find a matrix C' with the required
property which is invertible.
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336. (Correction) Show that the sequence (ay),>1 defined by
an = 2V + 23], n > 1,
contains infinitely many odd numbers and infinitely many even numbers. Here [z]
is the integer part of x.

Proposed by Marius Cavachi, Ovidius University of Constanta,
Constanta, Romania.

Solution by the author. We write v/2, v/3 in base 2 as /2 = 0.z1z5 ... and
V3 = 04192 .... Assume that there is an integer N > 1 such that a, is odd for
n > N. Since in base 2 it holds a, = z1...2n + Y1 ...Yn, we have (z,,yn) €
€ {(0,1),(1,0)} for n > N. Tt follows that the base 2 expansion of v/2 + /3 has the
form 1.z1...zy_1111..., so the number v/2 + /3 is rational, which is false.

Similarly, if we assume that a, is even for all sufficiently large n, we get
(€, yn) € {(0,0),(1,1)} for n > N. Therefore, the base 2 expansion of /3 — /2 has
the form 0.¢; ...tx_1000.. ., whence v/3 — /2 is a rational number, which is not the
case.

ERRATUM

Unfortunately, the proposed problems in the 3-4/2011 issue of GMA were
wrongly counted from 323 to 336, same as the problems from the previous issue. In
fact they should have been counted from 337 to 350. Therefore a problem indexed
as n in the 3-4/2011 issue should be regarded as problem n + 14.



