In this paper, we use a vector-valued conditioning function to
define a conditional Fourier-Feynman transform (CFFT) on the Wiener
space. We establish the existence of the CFFT for bounded
functionals which form a Banach algebra. We then investigate Fubini
theorems for the CFFT. The Fubini theorems for the transforms
investigated in this paper are to express the iterated CFFT as a
single CFFT. The conditioning functions in the Fubini theorems are
uncorrelated finite-dimensional random vectors on the Wiener space.